In this paper, several types of torque distribution functions (TDFs) are presented for the instantaneous torque control of switched reluctance motor (SRM) drives. To verify the feasibility and effectiveness of the proposed TDFs, two different categories—parameter non-adaptive and parameter adaptive functions—are introduced and analyzed. These different types of TDFs are systematically implemented in instantaneous torque control schemes to enhance the performance of SRM drives. The proposed torque control method, incorporating these various TDFs, is modeled and simulated in PSIM software to validate the presented control schemes. Simulation results demonstrate the effectiveness of the proposed approach in achieving precise torque control and improving the dynamic performance of SRM drives.
In this paper, we deal with the design of a model predictive control (MPC) for precise speed servo control of DC motor systems. The proposed controller is designed in the form of optimal control that calculates and outputs the optimized control input under constraints for each sampling. In particular, MPC designs the control inputs in advance for each sampling and predicts the outputs using them. Thus, it shows excellent control performance even in the case of disturbance or model uncertainty. The effectiveness of the proposed controller was demonstrated through computer simulations using MATLAB/Simulink and DC motor experimental system using real time controller. Moreover, the effectiveness of the proposed controller was confirmed by comparing its control performance with PID controller, which was tested under the same experimental condition as the MPC.
An in-wheel motor is a system in which a drive motor is mounted inside a wheel along with a braking device, and the motor inside the wheel directly drives the wheel. An SR motor drive in replace of the conventional PM motor drive for in-wheel motor system has been proposed and analyzed. Two different types of converters were selected and their feasibility in terms of different current control schemes was analyzed and validated through dynamic simulation using PSIM software.
본 논문은 직류전동기(DC motor)와 전기적인 특성은 유사하지만, 수명과 신뢰성이 향상된 BLDC 모터의 제어기법에 대해 언 급하고 있다. BLDC모터는 회전자의 위치 정보를 사용하여 직류전동기의 기계적인 접촉에 의한 정류 장치를 제거함으로써 내구성과 속도 안정성을 향상시킬 수 있다. 본 연구에서는 BLDC모터의 권선에 흐르는 전류가 직류전동기의 전기자에 흐르는 구형파 형태의 전 류인 것에 착안하여 직류전동기에 대한 제어기를 설계하고, 설계된 제어기를 3상 BLDC모터에 적용하여 제어기의 유효성을 확인하였 다. 이를 위해 3상 BLDC모터의 전기적인 파라미터 값을 가지는 단상 직류전동기의 모델링을 실시하였고, 도출된 시스템에 대해 근궤 적법을 적용하여 전동기의 속도제어를 위한 PI 제어기를 설계하였다. DC 전동기의 속도제어 시뮬레이션을 시행하여 제어기의 성능을 확인하였고, 동일한 제어기를 MATLAB으로 구현한 3상 BLDC모터의 속도제어에 적용하였다. DC 전동기와 유사한 제어 결과를 3상 BLDC모터에서 얻을 수 있었고, 이를 통해 연구에서 제안한 제어기법의 유용성을 확인할 수 있었다.
In this research, a new piston pinhole boring machine for simultaneous 3-axis machining using linear motor and tilting unit is developed. We propose a new method that combines the linear motor and tilting unit to overcome the limitations of existing techniques. By using the linear motor, we suggest oval machining of piston pin holes. The horizontal reciprocating motion of the linear motor allows for oval machining, creating horizontal or vertical ovals on the pin holes based on the spindle tool's rotation angle. For profile machining of piston pin holes, we propose the use of a tilting unit that converts servo motor motion into linear motion. The vertical motion of the tilting unit enables profile machining, allowing the spindle tool connected to it to translate vertically during spindle rotation and shape the pin holes. To ensure simultaneous oval and profile machining, we suggest channel synchronization, separating the oval and profile machining channels. Synchronizing these channels enables both oval and profile machining to be performed simultaneously on the pin holes. In summary, this research aims to develop a piston pinhole boring machine that effectively utilizes the linear motor and tilting unit for accurate and productive pin hole machining, achieving simultaneous 3-axis machining.
In this research, a new structure of an asymmetric piston dedicated machining center is developed. By applying 2 linear motors in this machine, the slide unit structure could be simplified by comparing to the ball screw method, resulting in easier maintenance of the machine and enabling simultaneous machining in 2 axes and high-speed precision machining. In addition, a dedicated HMI for the asymmetric piston is developed to support efficient operation by workers, allowing them to verify product quality and take necessary actions. It is confirmed that by fully utilizing control libraries and productive programming languages, immediate response to future demands could be achieved. Through speed control loop performance testing, it is confirmed that applying feedforward function could improve the response speed, control accuracy, and stability of the speed control loop. The application of polynomial interpolation and Newton interpolation in the actual machining of asymmetric pistons confirmed the achievement of dynamic machining precision at high speeds. The developed machine and HMI are expected to contribute significantly to the efficiency, productivity, and improvement of product quality in the machining of asymmetric pistons.
When developing a new motor, a high-speed load test is performed using dynamo equipment to calculate the efficiency of the developed motor using the collected dynamo data. When connecting the test motor and the dynamo used as a load, abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft and looseness of the connection, which may lead to a safety accident. In this study, three vibration sensors are attached to the surface of bearing parts of the test motor to measure the vibration value, and statistics such as kurtosis, skewness, and percentiles are obtained in order to clearly express the pattern of the measurement data. With these statistics, machine learning models are developed. The developed model in this way can be used as a diagnostic system that can detect abnormal conditions of the motor test equipment through monitoring the motor vibration data during the motor test.
Motor-operated valve functions to block or connect the flow of fluid in nuclear power plant and especially safety-related valves are evaluated with operability margin calculations, that should have positive value in both open and close stroke. Although all actuators have inertia force which increase operating margin of valve closing stroke, inertia force, after control switch operation in actuator is not considered in evaluating operability margin calculation process. In this paper, the hidden margin by inertia force of each actuator model in closing stroke was studied quantitatively.
This paper describes the design of H-infinity controller for robust control of a DC motor system. The suggested controller can ensure robustness against disturbance and model uncertainty by minimizing H-infinity norm of the transfer function from exogenous input to performance output and applying the small gain theorem. In particular, the controller was designed to reduce the effects of disturbance and model uncertainty simultaneously by formalizing these problems as a mixed sensitivity problem. The validity of the proposed controller was demonstrated by computer simulations and real experiments. Moreover, the effectiveness of the proposed controller was confirmed by comparing its performance with PI controller, which was tested under the same experimental condition as the H-infinity controller.
In this study, the cooling performance of the motor was analyzed according to the number and the length of the fins of the heat sink, and at the same time, the effect of forced convection on the cooling performance improvement by changing the air flow speed of the cooling fan was conducted. In order to find out the cooling performance in terms of turbulent kinetic energy, pressure, and temperature according to the number of heat sink fins, length of fins, and wind speed of the cooling fan, an aluminum heat sink was modeled according to the size of the motor. The heating value of the motor was calculated, and it was set to be the same under all analysis conditions. The turbulence model applied for numerical analysis in this study used the standard k-ε model. As a result, it was confirmed that the cooling effect of the heat sink increases as the air flow speed of the cooling fan, the number of fins, and the length of fins increase.