PURPOSES : This study was conducted to evaluate the physical properties of micro-foamed asphalt binders. Surfactants and water-soluble anti-stripping agent were used to improve the performance of the foamed asphalt binder, and a domestically developed foamed asphalt generator was used for the micro-foamed asphalt binder. The results of this study can be used as technical data for the domestic application of foamed asphalt technology.
METHODS : To evaluate the physical properties of the micro-foamed asphalt binder, basic properties such as penetration, viscosity, softening point, and ductility were evaluated. Additionally, DSR and BBR tests were performed to confirm the change in the performance grade of the micro-formed asphalt binder when using surfactants, water-soluble anti-stripping agent, and water.
RESULTS : Of the results of evaluating the physical properties of the micro-foamed asphalt binder containing surfactant confirmed that the kinematic viscosity was reduced by 12.5% compared with the straight asphalt binder, which indirectly confirmed that compaction is possible even at low temperatures when producing the asphalt mixture. In addition, the PG grade of straight asphalt and micro-foamed asphalt binder was PG 64-22. This result indicates that surfactants, water-soluble anti-stripping agent, and water did not significantly affect the PG grade of the asphalt binder.
CONCLUSIONS : The properties of the micro-foamed asphalt binder were confirmed through the evaluation of the physical and rheological properties of the foamed asphalt binder to which the surfactant and water-soluble anti-stripping agent were applied, and we determined that it can be used as a technical material for the revitalization of Korean foamed asphalt technology.
Mass mortality of mariculture fish due to high summer temperatures is a major issue in the mariculture industry in many coastal waters of Korea, yet measures to mitigate the impact are generally limited. We injected a micro-bubble of liquefied oxygen into the bottom of rockfish cages (about 6-8 m deep) in order to maximize the dispersal of micro-bubbled seawater and reduce fish mortality. The injection of low-temperature oxygen in micro-bubbles lowered the water temperature at the injection area by as much as 1℃ and increased dissolved oxygen concentration by 0.5 ppm. In early August, following a week with persistent high water temperature (above 28.5℃), there was an increase in fish mortality despite the micro-bubble system, which resulted in approximately 7% death of the total introduced fish population. However, this mortality appeared to be much lower than mortality reported in a neighboring mariculture facility (approximately 50% mortality). We also estimated the volume that can be recirculated with pumped seawater using a micro-bubble system. We suggest that this approach of injecting liquefied oxygen through a micro-bubble system may reduce fish mortality during high temperature periods.
본 연구는 도로시설물의 염화칼슘 제거를 위한 미세기포 세척장비의 최적 운용조건에 대하여 성능평가를 수행하였다. 실험에 사용된 미세기포의 직경은 196.6±100.6nm 에 1.36×108개/ml의 농도를 나타낸다. 세척장비의 분사장치에 대한 실험 성능결과, 100bar의 분사압력에서 100cm, 150cm 분사거리에 약 93%, 91%의 세척효율이 나타나는 것으로 확인되었다. 미세기포 생성(순환)횟수를 2-6회로 증가시킴에 따라 최소 1%에서 7%까지 염화물 제거율이 높아짐을 확인하였다. 미세기포 생성 공기유량을 4 ml/min에서 0.5 ml/min으로 낮춤에 따라 세척효율이 최대 30%까지 증가하는 것이 확인되었다. 일반 상수도와 미세기포의 세척효율은 미세기포가 일반상수도 보다 세척효율이 25% 높게 나타났다.
Microbubbles oxygen transfer to water was simulated based on experimental results obtained from the bubbles generation operated under varying liquid supply velocity to the multi-step orifices of the generator. It had been known that liquid supply velocity and bubble size are inversely related. In the oxygen transfer, a non-steady state was assumed and the pseudo stagnation caused the slow movement of bubbles from the bottom to the water surface. Two parameters were considered for the simulation: They represent a factor to correct the pseudo stagnation state and a scale which represented the amount of bubbles in supply versus time. The sum of absolute error determined by fitting regression to the experimental results was comparable to that of the American Society of Civil Engineers (ASCE) model, which is based on concentration differential as the driving force. Hence, considering the bubbles formation factors, the simulation process has the potential to be easily used for applications by introducing two parameters in the assumptions. Compared with the ASCE model, the simulation method reproduced the experimental results well by detailed conditions.
Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.
역삼투막 운영에 있어서 유기물 오염에 대한 문제들을 해결하기 위해 많은 연구를 하고 있다. 현재 가성소다 (NaOH)를 사용하여 유기물 오염 제거를 하고 있다. 본 연구는 지속적인 막오염 증가 문제를 해결하기 위한 물리/화학적 세정 기법으로서 기존에 사용하던 가성소다와 Micro-bubble를 이용하여 유기물 오염 제거 실험을 수행되었다. 멤브레인 강제 오염 을 위해 Humic acid sodium, Bovine serum albumin, Sodium alginate 약품을 사용하여 유기물 오염을 시켰다. 유기물 오염에 따른 Flux를 관찰하였고, 가성소다와 Micro-bubble를 이용한 유기물 오염 제거 실험은 가성소다로만 사용했을 때보다 향상 된 것을 관찰했다.
Micro bubbles are widely used in many cases such as agriculture, fishery, skin care, prevention of water pollution. A high pressure compressor which is one of part of a micro bubble generating system is needed to generate these micro bubbles. The purpose of this research is the development of a high pressure compressor which is achieve following conditions; discharge flow 0.6ℓ/min, maximum air flow 2ℓ/min, discharge pressure 5bar. To achieve these conditions, we optimized the geometry of cylinder and piston, clearance volume, compression ratio, power of operating motor experimentally. Moreover, we minimized the compressor which is the biggest part of a micro bubble generating system so that we could minimized the size of entire system.
The mechanism of micro-bubble generation with a pump is not clarified yet, so the design of water treatment systems with a micro-bubble generating pump is based on trial and error methods. This study tried to explain clearly quantitative relationships of experimental micro-bubble concentration (Cair) of continuous operation tests with a micro-bubble generating pump and theoretical air solubility. Operation parameters for the tests were discharge pressure (Pg), water (Qw0) and air (q0) flow rates, orifice diameter (DO), and retention time (t). The experimental micro-bubble concentrations (Cair) at 4.8 atm of discharge pressure (Pg) were in the range of 21.04 to 25.29 mL/L. When the retention time (t) by changing the pipe line length (LP) increased from 1.22 to 6.77s, the experimental micro-bubble concentrations (Cair) increased from 25.86 to 30.78 mL air/L water linearly. The dissolved and dispersed micro-bubble concentrations (Cair) are approximately 4 times more than the theoretical air solubility.
This study carried out zeta potential measurements of the Microcystis sp. under various solutions condition and investigated the characteristics of Microcystis sp. through the size control of microbubbles to eliminate algae that causes problems in aquatic ecosystems and human activities. DAF process was adopted and several coagulants were used to remove the Microcystis sp. CCD Camera was used to measure and analyze the size of microbubble, and fluorescent microscope was used to observe the particle, algae species and community. Zeta potential behavior of the algae was analyzed by using ELS-Z. Lab-scale and pilot-scale experiments were conducted to test flotation process. Polyaluminium chloride(PAC) coagulant was used, and the removal efficiency of the algae was assessed through Chlorophyll-a analysis. In the Lab-scale experiment, 2.2 ppm, 11 ppm, 22 ppm, and 44 ppm of polyaluminium chloride was injected to coagulate the algae. The coagulated algae was floated by the microbubble. The microbubbles in the experiments were generated at a air pressure of 450 ∼ 550 kPa. The microbubble size was controlled in 36 ㎛, 100 ㎛, and 200 ㎛, respectively by using different diffuser. The results of lab-scale experiments on flotation plant indicated that the average removal rate was about 90% or above for 11 ppm, 22 ppm, and 44 ppm of polyaluminium chloride. On the other hand, in the pilot-scale experiment, the removal efficiency was in the range of 85% to 95% in all dose ranges of polyalumium chloride and aluminium sulfate coagulants.
The goal of this study was to evaluate micro-bubble concentration (Cair) in water by air/water ratio (A/W ratio) with a micro-bubble generating pump. The estimation of micro-bubble concentration is based on the balance of inlet/outlet air and water flow rate. On net A/W ratio to be generated micro-bubble, we found that the obtained the Cair are shown as a function of discharge pressure (Pg) of the micro-bubble generating pump. The correlation of the Cair and the Pg(Cair =3.261Pg-1.754) was adequately described by the least square methods with a high correlation coefficient (r = 0.9459) and calculated values fit the experimental data quite well. The Cair was lower than theoretical dissolved air concentration (Caq) calculated by Henry’s law. The Cair for being operated the micro-bubble generating pump was 6.75 – 39.53 mL/L, however, we found that the optimum of the Cair to generate micro-bubble was the range from 10 to 12 mL/L.
The sludge flotation/thickening apparatus equipped a micro-bubble generating pump was used to investigate micro-bubble generating properties on operational parameters. We evaluated micro-bubble generating properties as results to be operated the apparatus by operational parameters which are pump discharge pressure, air/water ratio(A/W ratio), air flow rate, and water flow rate. Micro-bubble generating efficiencies in pumps without recycling flow and with 50% of recycling flow was found to be very efficient on optimum A/W ratio from 1.06 to 3.62% and optimum A/W ratio from 1.05 to 4.06%, respectively. In condition of 3.6% of A/W ratio, we showed that the apparatus could be generated 36,000 ppm of micro-bubble concentration to be optimum treatment efficiency in sludge thickening process.
The main objectives of this research are to investigate characteristics of ozone solubility due to low solubility of conventional bubbles-ozone generators, evaluate the treatment characteristics of reclaiming textile wastewater for industrial water by means of micro/nano bubbles-dissolved ozone flotation(MNB-DOF) process. The textile wastewater used in this research was obtained from final effluent of the textile wastewater in B city. There is a 400L reactor which consists of a micro-nano bubble system and a ozone generator for experiments. As a result of generating micro-nano bubbles (below 0.5 ㎛) by using of MNB-DOF process, it improved ozone solubility due to higher ozone transfer rates. Consequently, the shorter ozonation time clearly indicates the lower power costs. The reported results clearly indicated that MNB-DOF process can be effectively and inexpensively. Results of the experiments through MNB-DOF process in this study satisfy all reclaiming standards as industrial water: pH 6.5~8.5, SS 10 mg/L or below, BOD_5 6 mg/L or below, turbidity 10 NTU or below, Coliforms 1,000/100 mL or below. Therefore there is a possibility of the reclaiming of the textile wastewater as industrial water.
Many lakes or irrigative reservoirs in Korea are rapidly contaminated due to the ever increasing pollutants. Although lots of treatment processes have been recommended and practiced, economical and technical improvement is currently needed. In this study, contaminated irrigation reservoir was treated using the proposed process which is consisted of fine air bubbles, coagulation and flotation. Fine bubbles, approximate diameter of 3 to 10 ㎛, were generated using cavitation in the pressurized tank and polyaluminum chloride was used as coagulants. This fine bubbles, coagulation and flotation effectively controlled the low density algae, for example, Chlorophyll-a was removed more than 97 %. Removal efficiency of COD, SS, T-N and T-P were 80.7%, 94.3%, 64.1% and 92.4%, respectively. Pollutants released from the sediments was removed more than 80% of organics and 60-70 % of nutrients. Consequently, fine bubbles coagulation and flotation process could be effectively used as an alternative treatment method for the purpose of control of lake water quality.