This study evaluated the emission characteristics of volatile organic compounds (VOCs) from 29 asphalt concrete (ascon) manufacturing facilities in South Korea. VOC concentrations were measured inside industrial stacks and storage silos and during and after the truck loading process. Based on these measurements, emission factors were calculated according to facility type and fuel consumption rate. Afterward, they were compared with emission factors set by the United States Environmental Protection Agency (U.S. EPA). The major VOCs emitted from ascon manufacturing facilities were identified as benzene, toluene, ethylbenzene, and the xylene isomers (o-xylene, m-xylene, and p-xylene). The emission concentrations of the VOCs were found to be relatively higher inside industrial stacks and storage silos. Emission factors varied depending on the facility type, with lower values observed in manufacturing facilities using recycled ascon compared to conventional ascon facilities. The emission factors derived in this research were found to be lower than those reported by the U.S. EPA. This difference is attributed to the fact that the emission factors in this study were calculated based on VOC concentrations after treatment by pollution control facilities. As the Clean Air Policy Support System (CAPSS) also sets emission factors based on post-treatment concentrations, this study’s findings can serve as fundamental data to enhance the accuracy of VOC emission estimations.
This study measured and analyzed the discharge concentration and characteristics of odor substances emitted from the discharge outlets of asphalt manufacturing facilities in South Korea. Measured factors included flow rate, composite odors, and 22 designated odor substances. After applying the dilution factor of composite odors emitted from 33 asphalt manufacturing facilities located in various regions to the composite odor emission standard of 500 times, it was found that more than half of these facilities exceeded the emission standard. The contribution rate of the designated odor substances from the discharge outlets was the highest for acetaldehyde at over 50%, followed by hydrogen sulfide and methyl mercaptan. The correlation between composite odors and the concentration of major designated odor substances was analyzed, and it was found that methyl mercaptan and acetaldehyde showed some correlation with the composite odor dilution factor. The methyl mercaptan odor intensity corresponding to the odor intensity of 4.5 to 5 ppb, which is the allowable odor dilution multiple emission standard of the odor emission source outlet, was estimated to be approximately 1.6 to 2.2 ppb, and the corresponding methyl mercaptan emission concentration range was estimated to be 0.98 to 2.02 ppb. The composite odor emission coefficient of asphalt concrete manufacturing facilities was estimated to be higher for general asphalt concrete than for asphalt concrete recycling facilities, and the composite odor emission coefficient of newly produced general asphalt concrete was estimated to be greater than that of recycled asphalt concrete. In terms of fuel usage, the composite odor emission coefficient of facilities that used Bunker C fuel oil was estimated to be higher than that of facilities powered by LPG and LNG fuel. It was deemed necessary to select 2 to 3 major designated odor substances that are correlated with the composite odor dilution factor for each major odor emission source, set the designated odor substance concentration corresponding to the composite odor dilution factor emission allowance standard, and review a plan to monitor the designated odor substances at the emission point.
In this study used Computational Fluid Dynamic analysis to examine NOx reduction in hydrogen combustion, analyzing six conditions with varying air/fuel ratios, temperatures, and concentrations. Results were compared between two combustor shapes and previous experimental data. Findings showed increased air/fuel ratios decreased flame temperature and increased post-combustion O2. NOx emissions peaked at high temperatures and low O2. Numerical results aligned with previous experimental trends, validating the approach. Combustor shape differences, reflecting variations in fuel and air pipes, significantly affected flow rates and combustion positions. This reduced NOx emissions up to a certain air/fuel ratio, but excessive increases diminished this effect. The study highlights the complex relationship between combustor design, operating conditions, and NOx emissions. Further research is needed to optimize NOx reduction by considering pipe numbers and combustion locations. Future studies should explore various combustor geometries, fine-tune air/fuel ratios, and investigate additional parameters influencing NOx formation and reduction in hydrogen combustion systems.
One of the harmful substances produced by livestock manure is ammonia (NH3), which is emitted at a high rate. Additionally, NH3 reacts with sulfur oxides (SOx) and nitrogen oxides (NOx) in the atmosphere to produce fine particulate matter (PM2.5). However, the management and countermeasures for NH3 in livestock facilities were found to be inadequate. To establish effective measures, an NH3 emission factor that complies with certified methodologies is required. This study calculates the emission factor by monitoring NH3 concentration and ventilation between September 2022 and May 2023 in a mechanically-ventilated enclosed facility. The data measurement was performed in accordance with the VERA test protocol from Europe, and NH3 concentrations were monitored in real-time using photoacoustic spectroscopy measurement equipment. The average NH3 concentrations for Rooms 1, 2, and 3 during the entire period were measured at 0.96 ± 0.39 ppm, 1.20 ± 0.57 ppm, and 1.34 ± 0.71 ppm, respectively, with an overall average of approximately 1.17 ± 0.49 ppm. The average ventilation was recorded at 2,782.0 ± 1,510.4 m³/h, with an average internal temperature of 26.0 ± 1.5 °C and a relative humidity of 63.9 ± 5.2%. The average emission factor per room was calculated as 0.14 ± 0.03 g/day/pig for Room 1, 0.19 ± 0.07 g/day/pig for Room 2, and 0.15 ± 0.05 g/day/pig for Room 3. Ultimately, this study determined the average NH3 emission factor for the weaned pig facility to be 0.16 g/day/ pig.
Biodiesel is a traditional energy field that can replace low-quality marine fuels for ships and various studies have been conducted. Since the 2000s, Korea has introduced a mandatory supply system of biodiesel for domestic vehicle diesel, gradually raising the blending ratio from 0.5% to 3.5%, and is expected to raise the mandatory blending ratio to about 8.0% by 2030. Therefore, in this study attempted to blend high-quality samples that meet the biodiesel quality standards manufactured by domestic companies with MGO in ratios ranging from 0 to 60%. We utilized a 1-ton combustion chamber to compare and analyze the exhaust gas emissions characteristics. As a result, in the BD60 condition, which represents the maximum range in this study, the O2 increased by approximately 1.5%p, and CO2 tended to decrease by 1.1%p. NOx decreased by approximately 18.2%p from 34.1 ppm to 27.9 ppm. In the case of SOx, a very low concentration of 0.08 ppm was detected under the BD0 condition, and it was undetectable under all other conditions containing biodiesel. This suggests that MGO itself has excellent low-sulfur oil quality and can implement zero SOx through biodiesel mixing. Furthermore the combustion efficiency decreased by approximately 1.91%, from 72% to 70.2%, and the exhaust gas temperature also decreased by about 4.5%p. However despite the lower calorific value of biodiesel compared to MGO, it demonstrated relatively close thermal output per unit content. This indicates sufficient potential for biodiesel to serve as a viable alternative fuel for ships in the future.
The odors emitted from wastewater treatment plants are not only a health and hygiene problem, but can also lead to complaints from residents and have wider social ramifications such as bringing about falling property values in the surrounding area. In this paper, based on the data measured at domestic and overseas wastewater treatment facilities, the concentrations of complex odors and odorous compounds were compared for each treatment/process: primary treatment, secondary treatment, and sludge treatment processes. Odor compounds that contribute greatly to complex odors were summarized for each process. In addition, the characteristics of odor wheels for each wastewater treatment process, which provide both chemical and olfactory information regarding odors, were reviewed. For domestic wastewater treatment facilities, the complex odor concentrations (unit, dilution factor) of the primary and secondary treatment processes were 4.5-100,000 (median, 32.1) and 2.5-30,000 (median, 10.7), respectively. However, the complex odor concentrations in the sludge treatment process were 3.0-100,000 (median, 118.7), which was more than three times higher than that in the wastewater treatment process. In the wastewater treatment process, those odor compounds making the greatest contributions to complex odors were sulfur-containing compounds such as hydrogen sulfide, dimethyl sulfide, and dimethyl disulfide DMS. In order to properly manage odors from wastewater treatment plants and minimize their impact, it is important to understand the status of odor emissions. Therefore, the compositions and concentrations of odors from wastewater treatment processes and odor wheel information, which are reviewed in this paper, are used to evaluate the potential risk of odor from wastewater treatment facilities in order to derive strategies to minimize odor emissions. Moreover, the information can be usefully used to introduce the best available technology to reduce odors emitted from wastewater treatment facilities.
In this study, when Butyl ether, a type of diether-based oxygenated fuel, is mixed in each volume ratio in a naturally aspirated direct injection diesel engine, the exhaust gas emission characteristics of the oxygenated component in the fuel affect each operating area of the engine I wanted to investigate the effect on. For comparative measurement of engine performance and exhaust emissions, commercial diesel and butyl ether mixed fuels were classified into 4 types according to the mixing ratio and tested. As the content of butyl ether in fuel increases, soot emission reduction increases, and when the maximum mixing amount of butyl ether (diesel 80vol-% + BE 20vol%) is applied, compared to the case of using only diesel as fuel, at 2500 rpm and no load, 39%, and about 32% of smoke reduction effect at full load was confirmed.
The study used the whole-life carbon assessment method to conduct a thorough carbon-neutral evaluation of a standard steel structure. To further assess carbon emissions, 11 design-changed models were evaluated, with changes made to the span between beams and columns. The results of the carbon emission assessment showed savings of approximately 13.1% by implementing the stage of the beyond life cycle. Additionally, the evaluation of carbon emissions through design changes revealed a difference of up to 42.2%. These findings confirmed that recycling and structural design changes can significantly reduce carbon emissions by up to 48.6%, making it an effective means of achieving carbon neutrality. It is therefore necessary to apply the stage of beyond life cycle and structural change to reduce carbon emissions.
This review comprehensively summarizes the livestock odor reduction method by dietary manipulation, in-housing management, and manure management. The gut microbial metabolism of animals can be stimulated by low-crude protein feeding and the addition of probiotics, enzymes, plant extracts, and/or organic acids to their feed. These methods can result in reduced odor emissions from manure. For in-housing management, it is important to maintain the proper breeding density in the barn facilities, regularly remove dust and manure, and periodically clean the barn facilities. A barn using litter on the floor can reduce odor at a relatively low cost by adding adsorbents such as zeolite, biochar, etc. Although masking agent spraying can be the simplest and quickest way to control odors, it is not a fundamental odor mitigation strategy. Odor emissions can be reduced by installing covers on manure slurry storage facilities or by acidifying the manure slurry. It is necessary to install a solid-liquid separator in an enclosed facility to minimize odor emissions. Other methods for reducing odor emissions include covering manure composting plants with semi-permeable membranes or using reactor composting technology. In order to minimize odor emissions in the liquid manure composting, sufficient oxygen must be supplied during the fermentation process. Furthermore, the odor reduction effect can be achieved through the liquid manure pit recharge system which supplies matured liquid manure fertilizer to the slurry pit in the pig house.
We used the measurement data derived from a proton transfer reaction time-offlight mass spectrometry (PTR-ToF-MS) to ascertain the source profile of volatile organic compounds (VOCs) from 4 major industrial classifications which showed the highest emissions from a total of 26 industrial classifications of A industrial complex. Methanol (MOH) was indicated as the highest VOC in the industrial classification of fabricated metal manufacture, and it was followed by dichloromethane (DM), ethanol (EN) and acetaldehyde (AAE). In the industrial classification of printing and recording media, the emission of ethylacetate (EA) and toluene (TOL) were the highest, and were followed by acetone (ACT), ethanol (EN) and acetic acid (AA). TOL, MOH, 2-butanol (MEK) and AAE were measured at high concentrations in the classification of rubber and plastic manufacture. In the classification of sewage, wastewater and manure treatment, TOL was the highest, and it was followed by MOH, H2S, and ethylbenzene (EBZ). In future studies, the source profiles for various industrial classifications which can provide scientific evidence must be completed, and then specified mitigation plans of VOCs for each industrial classification should be established.
In this review paper, the sources of odor, major odor compounds, and emission characteristics from livestock farms are summarized. The main sources of odor on livestock farms are barn facilities, manure storage facilities, manure composting facilities, and wastewater treatment facilities. High concentrations of odor are emitted during the manure removal process, and livestock odor tends to be the most severe in summer. There was a remarkable difference in odor intensity depending on the farm size and the cleaning condition, and odor intensity varied greatly depending on the weather parameters such as wind direction and speed. The concentrations of ammonia and hydrogen sulfide were high among the odor compounds emitted from livestock farms, and these compounds also contributed to odor intensity. The odor intensity in poultry and swine farms was higher than in cattle farms. Information on livestock odor emission is very useful for managing livestock odor complaints and designing odor abatement technologies.
This study was carried out in order to provide suggestions with regard to optimal control methods for various odor emission facilities (162 companies and 26 industrial classifications) through comparative analysis of effective odor treatment technologies for each type of odor substance by literature reviews, based on measured 22 odor substance data for 162 samples taken from A city. The industrial classification of Pulp showed the highest odor quotient (7,589 as average value) and was followed by the industrial classifications of Wastewater, Woods, and Furniture, indicating average odor quotient values of 2,361, 1,396 and 1,392, respectively. Absorption using chlorine dioxide and sodium hydroxide can be an optimal treatment method to remove the odor substances of sulfide and aldehyde groups. Biofilers with microbial communities will be effective to remove odors caused by volatile organic compounds (VOCs) and an absorption method using sulfuric acid is proper for the removal of odor substances caused by nitrogens.
The characteristics of pollutant emission for non-premixed flames with LCG 8000 and LCG 6000 represented as low calorific gases were investigated by numerical simulation. Commercial software (ANSYS 16.2 - FLUENT) is used to predict 2-D pollutant emission with GRI 3.0 detailed reaction mechanism. In addition, the addition of hydrogen to LCG 6000 was also considered. As result, the flame length and temperature of LHVGs were decreased with decreasing calorific value at the same condition. In addition, NO concentration was decreased as temperature decreased. However, CO concentration for LCG 8000 predicted to be slightly higher than that for methane due to the high propane concentration. In the case of LCG 6000 with added hydrogen, the flame length was the shortest and NO concentration was the highest due to the highest flame temperature, but CO concentration decreased rapidly due to the addition of the carbon-free fuel.
Diesel engine has the advantages of strong power, low fuel consumption and good durability, so it has been widely used in transportation, automobile, ship and other fields. However, the nitrogen oxides(NOx) and particulate matter(PM) emitted by diesel engines have become one of the main causes of air pollution. Especially during idling, the engine temperature is low, and there are more residual exhaust gases in the combustion chamber, resulting in the formation of more harmful emissions. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally investigated. The findings show that a remarkable improvement in PM–NOx trade-off can be achieved by burning diesel-bioethanol blend fuels.
Dimethoxymethane, also known as methylal, is an oxygenated additive that contains approximately 42% oxygen content and is soluble in diesel fuel. Experiments were conducted by using the five kinds of blended fuels with different volumetric percentage of DMM in a diesel fuel. The test engine was used four stroke, single cylinder, DI diesel engine. Also, data was collected at 24 kinds of various engine speed-load conditions. The aim of this study was to examine the effects of the addition of oxygenated additive to diesel fuel on the emissions and the performance. Smoke emissions of all DMM blended fuels were reduced substantially in comparison with diesel fuel. In addition, this study showed that simultaneous reduction of NOx and smoke emissions could be achieved by oxygenated additive and EGR method that was applied to decrease smoke emissions increasing with NOx emissions reduction.
Ammonia (NH3) is a basic gas in the atmosphere and is known to play an important role in producing adverse health and environmental effects. Atmospheric NH3 causes stunted livestock growth, decreased visibility, and induces lung diseases when high concentrations occur. In addition, atmospheric NH3 reacts with acidic species (sulfuric acid, nitric acid, etc.) and produces secondary inorganic aerosol. In this study, the NH3 concentration and ventilation of Rooms 1 to 3 inside a sow facility were measured during the period from March 25 to May 31, 2021. It was difficult to conduct long-term field experiments at housing where pigs are raised. However, in order to improve the accuracy and reliability of the data, repeated experiments were conducted in three pig rooms in the same environment. The average concentration of NH3 in Rooms 1 to 3 was measured to be 7.6 ± 2.7 ppm, 8.2 ± 2.8 ppm, and 8.2 ± 2.7 ppm, respectively. The average internal temperatures were 21.0 oC, 21.2 °C, and 21.8 °C, and the internal humidity was 49.3%, 49.2%, and 49.2%, respectively. The ventilation per pig in Rooms 1 to 3 was measured as 60.4m3/hour∙pig, 62.5m3/hour∙pig, and 64.9m3/hour∙pig, respectively. At this time, NH3 emissions from Rooms 1 to 3 were found to be 6.9 ± 0.8 g/day∙pig, 7.9 ± 1.5 g/day∙pig, and 8.2 ± 1.3 g/day∙pig, respectively. As a result of the correlation analysis, the NH3 concentration was analyzed as producing a negative correlation between the ventilation (r=-0.73) and the internal temperature (r=-0.60) increase. Finally, as a result of calculating the national NH3 emission factor, the NH3 emission of one sow room in spring was 7.7 ± 1.4 g/day∙pig, and the NH3 emission of one year was 2.8 kg/ year∙pig.