Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).
The purpose of this study is to compare the quality characteristics and antioxidant activities of the tagatose yogurt with different contents (6, 8, 10%) of cold brew liquid coffee. Tagatose is a low-calorie food ingredient with putative health-promoting benefits. The tagatose yogurt was fermented with Lactobacillus delbrueckii subsp. bulgaricus at 37±1oC for 20 h. The changes in acid production (pH and titratable acidity), viscosity, and lactic acid bacteria were determined every 5 h during fermentation. Color value was determined before and after fermentation, and antioxidant activities were performed after fermentation in triplicate. The yogurts containing cold brew liquid coffee had lower pH, higher acidity, and viscosity than the control, regardless of the liquid coffee contents. All samples had increasing levels of lactic acid bacteria over the fermentation period, but lactic acid bacteria of yogurts with the addition of cold brew liquid coffee increased further than the control. The total polyphenol/flavonoid content, DPPH/ ABTS/H2O2 radical scavenging activities, and reducing power increased when the liquid coffee content of the yogurt rose. Consequently, the optimal quality of tagatose yogurt was found when 6-8% of cold brew liquid coffee was added according to the overall results of quality properties and antioxidant activity.
The impact of storage temperature on the changes in acid value(AV), peroxide value(POV), color value, total phenolic content(TPC), and antioxidant activity in perilla seed(PS) was investigated. The PS was stored at 25, 35, and 45℃ for four weeks. An increase in the storage temperature resulted in significantly increased AV, POV, redness, and yellowness of the PS. Conversely, TPC, antioxidant activity, and redness of the PS significantly decreased. The changes in the AV and POV followed a first-order kinetic model, and the kinetic parameters such as k, t1/2, Q10 and Ea were calculated. The k and t1/2 values decreased with increasing storage temperature and the Q10 values for the AV and POV were 1.56, 1.91, 4.61, and 3.43, respectively. The Ea for the changes in of the AV and POV in the PS were 70.40, 102.63 kJ/mol, respectively. The half-life values for the AV and POV of the PS at 25℃ were 169.52 and 373.18 days, respectively, while the values at 45℃ for those, were 28.47 and 27.93 days, respectively.
Graphene oxide (GO) laminate is a new promising material for water purification system, which has extraordinary permeability only for water molecule. It consists of numerous nano-channels, in which water molecules could be nano-confined, resulting in slip of the molecules for very fast transportation speed. In this study, water penetration rate via different thickness of GO membrane according to driven pressures are measured experimentally, so that speed of water molecules and permeability are evaluated. Generally, water penetration rate via a membrane with macroscopic-sized channel increases linearly with pressure difference between up and bottom side of the membrane, but that via GO membrane approaches asymptotic value (i.e. saturation) as like a log function. Moreover, the permeability of GO membrane was observed in inverse proportion to its thickness. Based on the experimental observations, a correlation for volume flux via GO membrane was suggested with respect to its thickness and external pressure difference.
This study investigates the directional recrystallization behavior of Ni based oxide dispersion strengthened (ODS) alloy according to the zone annealing velocity. The zone annealing temperature is set as 1390oC, while the zone velocities are set as 2.5, 4, 6, and 10 cm/h, respectively. The initial microstructure observation of the as-extruded sample shows equiaxed grains of random orientation, with an average grain size of 530 nm. On the other hand, the zone annealed samples show a large deviation in grain size depending on the zone velocities. In particular, grains with a size of several millimeters are observed at 2.5-cm/h zone velocity. It is also found that the preferred orientation varies with the zone annealing velocity. On the basis of these results, this study discusses the role of zone velocities in the directional recrystallization of Ni base ODS alloy.
본 연구에서는 산화 공정이 Zircaloy-4 (Zry-4) 피복관의 염소화 반응 속도에 미치는 영향을 연구하기 위하여 Zry-4 피복관의 염소화 반응 실험을 수행하였다. 2시간 마다 반응 생성물을 회수하며 총 6 시간 동안 염소화 반응 실험을 수행하였고, 이를 통해 500도에서 10 시간 동안 산화된 Zry-4의 경우 초기 0-2 시간 구간에서 반응 속도가 현저히 저하되는 것을 확인하였다. 반응 잔류물은 fresh Zry-4와 산화된 Zry-4에서 각각 초기무게의 0.95, 1.65wt%로 확인되었다. 회수된 Zr의 순도는 두 경우 모두 99.61wt%로 동일하였다. 반응 속도의 정량적 분석을 위해 피복관의 반응 시간을 0.5, 1, 2, 4 시간인 경우에 대해 실험을 수행하였다. 실험 결과 분석을 통해 fresh Zry-4의 경우 전 영역에 걸쳐 23.35wt%/h의 단위 시간당 무게감소를 확인할 수 있었고, 산화된 Zry-4의 경우 반응 속도가 두 영역으로 나뉘는 것을 확인하였다. 산화된 Zry-4의 무게 감소 속도는 0-20wt% 영역에서는 17.12wt%/h, 20-100wt% 영역에서는 27.16wt%/h으로 나타났다.
Rhizosphere and non-rhizosphere soils were sampled from landfill area, riparian wetland, and rice paddy. The consortia were obtained by methane enrichment culture using the soils. The effects of ammonia on methane oxidation in the consortia were evaluated. Compared with methane oxidation rates without ammonia, the rates with ammonia of 1mg-N/bottle were similar or slightly lower. However, their methane oxidation rates were significantly reduced with 2~4mg-N ammonia/bottles. The effect of ammonia on the methanotrophic abundance was estimated by using a quantitative real-time PCR method targeting particulate methane monooxygenase gene. Ammonia didn’t negatively influence on the methanotrophic abundance although it inhibited the methane oxidation activity by methanotrophs.
실증용 UO pellet 산화로의 실증을 위한 제한된 핫셀 공간 안에서 사용후 핵 연료를 취급하는 산화로는 소형화 하여야 하고, 사용후 핵 연료 분말은 UO pellet 산화로 장치로부터 비산되지 않아야 한다. 본 연구에서는 분말의 최종속도를 구하기 위하여 Stokes식과 밀도비식을 제안하였다. UO 의 최종속도 SiO 의 최종속도를 사용하여 예측하였고, 비산방지를 할 수 있는 최적유량을 결정하였다. SiO 의 이론 최종속도 식을 검증하고, UO 과 관계식을 예측하기 위하여 아크릴 장치를 만들었다. 목업시설 에 설치 된 산화로에서 제안된 이론최종속도식 인 Stokes식 의 20 L/min과 밀도비식의 14.5 L/min을 적용하여 UO 분말의 필터감지에 의해 검증하였다. 그 결과 밀도비식에 의한 14.5 L/min은 UO 이전혀 검출되지 않았고, Stokes식의 20 L/min에서는 평균 7m 의 입도분말이 검출되었다. 따라서 UO pellet 산화로에서 UO이 비산되지 않는 최적유량은 14.5L/min임을 알 수 있었고, 제안된 밀도비식이 바람직함을 알 수 있었다.