선박의 선장이 일정한 목적을 가지고 일시 운항을 정지하는 경우인 정류는 실무에서 흔한 일이다. 이러한 정류 중인 선박의 법적 지위는 COLREG에서 정의하고 있지 않고, 학자들의 의견과 판례에서 일반항법 적용과 선원의 상무규정 적용이 상호 대립하고 있는 상황이다. 따라서 선박 상호 간에 어떠한 선박이 유지선, 피항선이 되는지 모호한 상황이다. 또한, 법적 지위의 불명확성으로 인하여 정류 중인 선박은 대수속력이 없는 항행중인 동력선이 되고, 이는 다른 선박에서 정류 중인 선박을 외관상 식별할 방법이 없는 상황이다. 이에 정류 중인 선박의 충돌사고가 지속적으로 발생하고 있다. 이러한 모호성을 제거하여 선박충돌사고를 예방할 필요가 있다. 한편, 선박자동 식별장치(AIS)는 선박의 위치, 침로, 속력 등의 정보와 더불어 항해상태에 대한 정보를 실시간으로 제공하는 장치이다. 항해상태는 IMO Res.A.1106(29)에 따라 항행중, 정박중, 조종제한선 등 선박의 현재 상태를 외부로 표시할 수 있는 기능인데, 현재 13번째 항목이 미래 사용 을 위하여 남겨두었다. 따라서 해당 항목에 ‘정류 중인 선박’을 할당하여 외부에서 정류 중인 선박의 상태를 확인할 수 있도록 하는 것을 제안한다.
이 연구는 다목적 선박(MPV)의 공기역학적 구조물 설계, 분석 및 향상을 통해 그린 워터 압력에 의한 구조적 안전을 보장하고, 탈탄소화 및 에너지 효율성에 이바지하는 방법을 기술하였다. 유한 요소 분석(FEA)을 통한 초기 평가에서 좌굴 발생에 대한 잠재적인 취약점 이 있음을 확인하였다. 이러한 문제를 해결하기 위해 보강재(Carling stiffener)와 두께 증가를 통하여 응력을 재분배하고 국부적인 좌굴 발생의 위험을 최소화하였다. 보강 후 분석 결과, 한국선급(KR)의 안전 기준인 항복 강도, 미국 선급(ABS) 좌굴 강도 및 노르웨이 표준(NORSOK) 변 위 기준을 모두 충족하는 것이 확인되었다. 결과적으로 고유치 좌굴 해석 결과가 안전 기준을 초과하고 최대 변위가 허용 한계 내에 있는 등 중요한 개선이 이루어졌다. 이러한 개선은 극한의 해양 조건에서 운영 신뢰성을 보장할 수 있다. 이 연구는 공기역학적 항력 감소와 구조적 안전성의 이중적인 이점을 강조하며, 국제 해사 기구(IMO)의 2050 탈탄소화 목표에 부합하는 연료 효율성 및 온실가스 배출 감소에 이바지할 수 있다. 연구 결과는 다양한 선박 유형에 걸쳐 항력 감소 기술을 확장하기 위한 기초 자료를 제공하며, 지속 가능하고 탄력적인 해양 운영을 위한 대안을 제시하였다. 향후 연구는 구조적 안전 평가를 가속할 수 있는 단순화된 모델링 기술 개발에 집중할 것이다.
수소 선박은 미래의 친환경 선박의 하나로 가장 주목받고 있다. 이러한 친환경 선박의 에너지원인 수소를 사용하기 위해서 는 안전성 확보가 가장 중요하다. 본 연구에서는 수소 관련 국내외 규정, 수소 연료 전지에 관한 안전기준, 수소 저장 시설에 관한 안 전기준, 수소 충전 시설에 관한 안전기준을 검토하였고, 수소 선박 안전기준 개발 시에 고려해야 할 누출 및 화염 경보 시스템, 환기 시스템, 폭발 피해 방지 시스템에 관한 기준을 제시하였다. 우리나라는 수소 선박과 수소충전소에 관한 안전기준이 없는 실정이지만, 수소 선박의 안전 운항에 관한 국제 경쟁력을 갖추기 위해서는 수소 선박 관련 실무 규정에서 법령에 이르기까지 넓은 범위에 걸쳐 안전기준이 개발되어야 한다. 그리고 향후 IMO의 규제나 국제 기준의 동향을 상세히 분석하고 이에 적극적으로 대응해 나가야 할 것 이다.
Recently marine accidents involving floating objects have been continuously increasing due to domestic coastal traffic conditions, and as a result cases of secondary-linked reduction gear damage have also occurred one after another. This research aims to evaluate the ship propulsion system safety through the analysis the effect of the torsional stress generated on the propeller shaft system when a rope or net is wrapped around a propeller at sea through theoretical analysis, simulation analysis, and ship empirical test.
곧 다가올 미래에는 자율운항선박, 육상 원격제어센터에서 제어되는 선박, 그리고 항해사가 탑승하여 운항하는 선박이 함 께 공존하며 해상을 운항할 것이며, 이러한 상황이 도래했을 때 해상 교통 환경의 안전을 평가할 수 있는 방법이 필요할 것으로 사료 된다. 이에 본 연구에서는 자율운항기술을 사용하여 항해사가 직접 조종하는 선박과 자율운항선박이 공존하는 해상환경 하에서 선박 조종시뮬레이션을 통해 통항 안전성을 평가하기 위한 방안을 제시하였다. 자선은 6-자유도 운동 기반의 MMG 모델을 심층 강화학습 기법 중 하나인 PPO 알고리즘으로 학습하여 자율운항 기능을 갖출 수 있도록 설계하였다. 타선은 평가 대상 해역의 해상 교통 모델 링 자료로부터 선박이 생성되도록 하였고, 기 학습된 선박모델을 기반으로 자율운항 기능을 구현되도록 하였다. 그리고 해양기상 자 료 데이터베이스로부터 조위, 파랑, 조류, 바람에 대한 자료를 수집하여 수치 모델을 수립하고 이를 기반으로 해양기상 모델을 생성하 여 시뮬레이터 상에서 해양 기상이 재현되도록 설계하였다. 마지막으로 안전성 평가는 기존의 평가 방법을 그대로 유지하되, 선박조 종시뮬레이션에서 해상교통류 시뮬레이션을 통한 충돌 위험성 평가가 가능하도록 하는 시스템을 제안하였다.