Autonomous vehicle (AV) technology is rapidly entering the commercialization phase driven by advancements in artificial intelligence, sensor fusion, and communication-based vehicle control systems. Real-world road testing and pilot deployments are increasingly being conducted, both domestically and internationally. However, ensuring the safe operation of AVs on public roads requires not only technological advancement of the vehicle itself but also a thorough pre-evaluation of the road environments in which AVs are expected to operate. However, most previous studies have focused primarily on improving internal algorithms or sensor performance, with relatively limited efforts to quantitatively assess how the structural and physical characteristics of road environments affect AV driving safety. To address this gap, this study quantitatively evaluated the compatibility of road environments for AV operation and defined the road conditions under which AVs can drive safely. Three evaluation scenarios were designed by combining static factors such as curve radius and longitudinal gradient with dynamic factors such as level of service (LOS). Using the MORAI SIM autonomous driving simulator, we modeled the driving behaviors of autonomous vehicles and buses in a virtual environment. For each scenario, the minimum time to collision (mTTC) from the moment the AV sensors detected a lead vehicle was calculated to assess risk levels across different road conditions.The analysis revealed that sharper curves and lower service levels resulted in significantly increased risk. Autonomous buses exhibited a higher risk on downhill segments, autonomous vehicles were more vulnerable to uphill slopes and gradient transitions. The findings of this study can be applied to establish road design standards, develop pre-assessment systems for AV road compatibility, and improve AV route planning and navigation systems, thereby providing valuable implications for policy and infrastructure development.
고속도로 터널 구간은 일반 도로에 비해 사고 발생 빈도와 심각도가 높으며, 특히 터널 내에서 발생하는 사고나 공사와 같은 돌발 상황은 대기 행렬을 유발해 후미 추돌 위험을 증가시킨다. 본 연구에서는 운전자가 돌발 상황 지점에 접근할 때 선제적으로 대응할 수 있도록, Driving Simulator를 활용하여 다양한 정보를 제공하는 터널 내 교통관리 시스템의 효과를 분석하였다. 분석 대상은 차로 변 경 유도, 속도 감소 유도, 돌발 상황 안내로 구성된 세 가지 교통관리 시스템의 개별 효과와 이들의 통합 운영이 터널의 안전성과 운 영 효율성에 미치는 영향을 포함하였다. 분석 결과, 세 가지 교통관리 시스템을 통해 터널 내 평균 통행 속도가 증가하였으며, 돌발 상황 발생 지점에서 차량의 차로 변경과 감속이 선제적으로 이루어지고 급감속 횟수가 현저히 감소하였다. 본 연구는 터널 내 돌발 상황 발생 시 다양한 정보를 제공함으로써 터널의 안전성과 교통흐름을 개선할 수 있음을 입증하였으며, 특히 여러 시스템을 통합적 으로 운영할 때 그 효과가 극대화됨을 Surrogate Safety Measure를 통해 확인하였다. 이러한 결과는 향후 터널 교통관리에서 단일 시스 템의 기능만을 고려하기보다는, 다양한 교통관리 시스템 간 상호작용을 고려해야 함을 시사한다.
본 연구에서는 해양공간 통합관리 수단의 지원책으로 활용되는 해양공간 정책 시뮬레이터 기술에 대한 한국, 중국, 일본, 미국, 유럽 등 주요 5개국에 대한 정량분석을 위한 유효특허 1,474건을 도출하고, 연도별, 국가별 특허출원 동향 및 워드 클라우드 분석을 통해 국내 기술 경쟁력 및 국내·외 기술 트렌드를 파악하였다. 분석 결과 해양공간 정책 시뮬레이터 기술의 경우 중국(1,254건, 85.1%) 주도의 특허출원이 활발하게 이루어지고 있으며, 세부 기술별로는 어업환경 변화예측 및 활용 시뮬레이터(AC)가 392건(26.6%)으로 가장 높은 것 으로 나타난다. 핵심 키워드 변화를 통해 최근에는 다중 데이터의 수집과 데이터의 탐지, 예측, 평가 등으로 기술 트렌드가 이루어지고 있 음을 확인하였으며, 중국 주도의 시장 독과점 및 선점에 대비하기 위해 주변 기술에 대한 특허출원 고려 및 표준화 선점 등의 연계 전략 을 통한 대비와 정부 차원의 해양공간 정책 시뮬레이터 기술 연구개발에 대한 적극적인 정책적 지원이 필요함을 진단하였다.
PURPOSES : Evaluation of the effectiveness of changing the form of yellow carpet installation as a way to reduce child pedestrian traffic accidents. METHODS : Through expert opinion, two improvement plans for yellow carpet installation (oblique type, extended type) were derived. The improvement paln was built in virtual reality, and a virtual driving experiment was performed using a driving simulator and eye-trakcing device. The improvement effects of the two alternatives were evaluated by analyzing eye-tracking data and driving behavior. RESULTS : In the case of the oblique type, it was analyzed that it was effective in improving the total gaze time and first gaze position compared to the normal type. In the case of the extended type, it was analyzed that the workload during operation can be reduced. However, neither of them had a significant effect on driving behavior. CONCLUSIONS : Although the change in the yellow carpet installation type did not affect the driver's driving behavior, it had advantages in terms of visual behavior and workload while driving, so it can be considered as an alternative among measures to improve traffic accidents involving children and pedestrians.
목적 : 본 연구는 시뮬레이터 훈련이 척수손상 환자의 운전시뮬레이터 도로 주행시간과 주행조작 능력에 미치는 영향을 알아보고자 하였다. 연구방법 : 본 연구는 단일사례실험연구 AB설계로 진행되었으며, 기초선 3회기, 중재기 10회기를 적용하였다. 기초선 3회, 중재기 5회 도로주행코스(중급) 수행 시 운전시간, 주행조작 능력 자료가 수집되었으며, 연구결과 분석을 위하여 시각적 분석 방법과 평균 ±2*표준 편차를 사용한 양적 분석을 동시에 사용하였다. 결과 : 연구대상자 3명의 총 주행시간은 기초선 A보다 중재기 B에서 3분 내외의 감소하였고, 세 명 모두에서 통계학적으 로 의미있는 주행 능력의 향상이 확인되었다. 주행조작능력 또한 오류 점수가 감소하였고, 첫 번째 참여자와 세 번째 참 여자의 경우 그 변화가 통계학적으로 유의하였다. 결론 : 본 연구에서 연구대상자의 총 주행시간 및 수행 오류의 감소가 확인되어 운전시뮬레이터 훈련의 효과가 있었다. 이 와 같은 결과는 운전시뮬레이터 훈련의 적용 가능성을 뒷받침 한다.
In this study, we proposed a simulator for the development of a digital multi-process welding machine and a welding process monitoring system. The simulator, which mimics the data generation process of the welding machine, is composed of process control circuit, peripheral device circuit, and wireless communication circuit. Utilizing this simulator, we aimed to develop a welding process monitoring system that can monitor the welding situations of four multi-process welding machines and three processes each, with data transmission through wireless communication. Through the operation of the proposed simulator, sequential digital processing of multi-process welding data and wireless communication were achieved. The welding process monitoring system enabled real-time monitoring and accumulation of the process data. The selection of upper and lower limits for process variables was carried out using a deep neural network based on allowable changes in bead shape, enabling the management of welding quality by applying a process control technique based on the trend of received data.
PURPOSES : Because a driving simulator typically focuses on analyzing a driver’s driving behavior, it is difficult to analyze the effect on the overall traffic flow. In contrast, traffic simulation can analyze traffic flow, that is, the interaction between vehicles; however, it has limitations in describing a driver’s driving behavior. Therefore, a method for integrating the simulator and traffic simulation was proposed. Information that could be controlled through driving experiments was used, and only the lane-change distance was considered so that a more natural driving behavior could be described in the traffic flow. METHODS : The simulated connection method proposed in this study was implemented under the assumption of specific traffic conditions. The driver’s lane-changing behavior (lane-changing distance, deceleration, and steering wheel) due to the occurrence of road debris was collected through a driving study. The lane-change distance was input as a parameter for the traffic simulation. Driving behavior and safety were compared between the basic traffic simulation setting, in which the driver's driving behavior information was not reflected, and the situation in which the driving simulator and traffic simulation were integrated. RESULTS : The number of conflicts between the traffic simulation default settings (Case 1) and the situation in which the driving simulator and traffic simulation were integrated (Case 2) was determined and compared for each analysis. The analysis revealed that the number of conflicts varied based on the level of service and road alignment of the analysis section. In addition, a statistical analysis was performed to verify the differences between the scenarios. There was a significant difference in the number of conflicts based on the level of service and road alignment. When analyzing a traffic simulation, it is necessary to replicate the driving behavior of the actual driver. CONCLUSIONS : We proposed an integration plan between the driving simulator and traffic simulation. This information can be used as fundamental data for the advancement of simulation integration methods.