Lightweighting is crucial in various industries, especially for bicycles where weight and stiffness are key. Traditional materials like steel, aluminum, and carbon each have pros and cons. This study compares hybrid tubes made of aluminum and carbon composites with conventional aluminum tubes. Using structural analysis and experimental testing, the hybrid tubes showed a weight reduction of up to 17.25% and maintained acceptable deformation levels. Finite element analysis confirmed these findings, demonstrating the hybrid tubes' potential as superior bicycle frame materials. Future research should focus on long-term durability and fatigue characteristics.
The heat transfer characteristics of double-pipe spiral heat exchanger using aluminum oxide nano-fluid were investigated by three different sizes of curvature size, experimentally. Five concentration of nano-fluid as working fluid were made and tested to analyze the heat transfer characteristics. As results, the heat transfer performance was improved at 0.25% of nano-fluid due to high thermal conductivity, however, as the concentration of nanofluid increased (~2.0%), the heat transfer performance deteriorated due to the increase in thermal resistance caused by the sedimentation of particles in the flow path. In addition, the nano-fluid has a higher pressure drop than water due to its high density and viscosity. The optimal range for heat transfer enhancement of nano-fluid was found to be less than 4.0 LPM in flow rate and 0.25% of nano-fluid concentration in this study.
Automobiles are an essential means of transporting passengers and cargo, but traffic accidents are inevitable in their operation. These accidents can occur in various forms, such as front, rear, and side collisions. The resulting damage to the vehicle can also be seen similarly; it is inherently distinct: the complexity of repairing the car body makes a simple reliance on textbook knowledge insufficient. Successful correction of the damaged body largely depends on the experience of the practitioner. Discussions on body repair techniques should be based on empirical data reflecting current industry standards and associated costs. The variability of individual repair methodologies can result in significant time and financial expenditure in the field of automotive bodies. Application of new material technologies to vehicle fabrication requires continuous training and empirical research, especially on the body repair process involving new materials. In particular, since the left and right aprons and side members are made of different materials, such as aluminum and high-strength steel, careful restoration of these parts is required. Technical considerations are needed. Interest in safety and environmental impacts. In this study, SPR bonding technology analyzes experimental results.
현재 우리나라 연안에서 어업활동을 하고 있는 어선의 재질은 거의 FRP로 구성되어 있으며 환경개선을 고려하여 재활용이 가 능한 알루미늄 소재의 어선으로 대처를 하고 있는 실정이다. 현재 국내의 알루미늄 연안 어선의 경우 한국 해양교통 안전공단과 해수부 를 통하여 승인이 이루어져 건조를 수행한다. 우리나라의 알루미늄 연안어선의 경우 선체와 하우스의 크기에 따라 톤수 규정을 준수하며 이에 따라 형상을 정의한다. 이는 선박을 건조함에 따라 초기 선주 요구조건에 중요한 역할을 가지며 구조에 대한 하중값을 바탕으로 규 정에 만족하는 두께를 산정을 하여 선박구조를 정의할 수 있다. 국내 어선의 어업 활용 면적에 대하여 갑판 면적을 최대한 활용할 수 있 는 카타마란 알루미늄 어선의 설계 방법 및 방향을 제시하였으며 기존 연구자료의 중․소형선박의 설계 및 구조에 대한 설계 안전성을 위해 적용하였으나 본 논문은 알루미늄 어선의 구조적 형상 고찰에 따라 설계하중을 적용하고 연결 부위의 강도 해석을 수행하여 선박에 대한 안전성을 확보하여 9.77톤급 알루미늄 카타마란 선박에 대한 설계방법 및 방향을 제시하고자 한다.
As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.
Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle s ize of a pprox imately 30 μm. As a r esult of t he PKG t est of t he YAG p hosphor p owder, t he s ynthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.
Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.
This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.
Metal additive manufacturing (AM) has transformed conventional manufacturing processes by offering unprecedented opportunities for design innovation, reduced lead times, and cost-effective production. Aluminum alloy, a material used in metal 3D printing, is a representative lightweight structural material known for its high specific strength and corrosion resistance. Consequently, there is an increasing demand for 3D printed aluminum alloy components across industries, including aerospace, transportation, and consumer goods. To meet this demand, research on alloys and process conditions that satisfy the specific requirement of each industry is necessary. However, 3D printing processes exhibit different behaviors of alloy elements owing to rapid thermal dynamics, making it challenging to predict the microstructure and properties. In this study, we gathered published data on the relationship between alloy composition, processing conditions, and properties. Furthermore, we conducted a sensitivity analysis on the effects of the process variables on the density and hardness of aluminum alloys used in additive manufacturing.
This study sought to conduct a fundamental investigation in order to test and evaluate the thermal performance of an aluminum stick curtain wall system. In terms of the thermal performance index, the infiltration rate of air tightness, thermal transmittance of the heat insulation property and temperature difference ratio of condensation resistance were experimentally measured. The research process can be divided into three parts. First of all, a database for the test report of the curtain wall was compiled and existing design criteria with respect to the evaluation method and standard of transparent building components such as curtain wall, window and door were analyzed to produce the specimens. Secondly, four different types of curtain wall specimens were created through investigating the curtain wall database. Thirdly, standard tests of thermal performance were carried out for airtightness, thermal performance and condensation resistance. As a result, the curtain wall specimens with low-e triple glazing covered by an aluminum capture system showed high thermal performance compared to other curtain wall specimens including low-e triple glazing with a 4-sided structural sealant glazing system. Air tightness of all types of curtain wall specimens satisfied level 1 standard for air tightness. It was found that a curtain wall which consists of a one track frame has difficulties meeting the residential standard of thermal performance with regard to thermal transmittance and condensation resistance.
In this study, crystallization was effectively suppressed in Al-based metallic glasses (Al-MGs) during pulverization by cryo-milling by applying an extremely low processing temperature and using a surfactant. Before Al-MGs can be used as an additive in Ag paste for solar cells, the particle sizes of the Al-MGs must be reduced by milling. However, during the ball milling process crystallization of the Al-MG is a problem. Once the Al-MG is crystallized, they no longer exhibit glass-like behavior, such as thermoplastic deformation, which is critical to decrease the electrical resistance of the Ag electrode. The main reason for crystallization during the ball milling process is the heat generated by collisions between the particles and the balls, or between the particles. Once the heat reaches the crystallization temperature of the Al-MGs, they start crystallization. Another reason for the crystallization is agglomeration of the particles. If the initially fed particles become severely agglomerated, they coalesce instead of being pulverized during the milling. The coalesced particles experience more collisions and finally crystallize. In this study, the heat generated during milling was suppressed by using cryo-milling with liquid-nitrogen, which was regularly fed into the milling jar. Also, the MG powders were dispersed using a surfactant before milling, so that the problem of agglomeration was resolved. Cryo-milling with the surfactant led to D50 = 10 um after 6 h milling, and we finally achieved a specific contact resistance of 0.22 mΩcm2 and electrical resistivity of 2.81 μΩcm using the milled MG particles.
This research investigated how adding Sb (0.75, 1.0, 2.0 and 5.0 wt%) to as-extruded aluminum alloys affected their microstructure, mechanical properties, electric and thermal conductivity. The addition of Sb resulted in the formation of AlSb intermetallic compounds. It was observed that intermetallic compounds in the alloys were distributed homogenously in the Al matrix. As the content of Sb increased, the area fraction of intermetallic compounds increased. It can be clearly seen that the intermetallic compounds were crushed into fine particles and homogenously arrayed during the extrusion process. As the Sb content increased, the average grain size decreased remarkably from 282.6 μm (0.75 wt%) to 109.2 μm (5.0 wt%) due to dynamic recrystallization by the dispersed intermetallic compounds in the aluminum matrix during the hot extrusion. As the Sb content increased from 0.75 to 2.0 wt%, the electrical conductivity decreased from 61.0 to 59.8 % of the International Annealed Copper Standard. Also, as the Sb content increased from 0.75 to 2.0 wt%, the ultimate tensile strength did not significantly change, from 67.3 to 67.8 MPa.
In this study, the noise reduction effect of the steam vent silencer was investigated by performing a transient flow analysis applying the Loss Model, a porous flow analysis model, and calculating the noise intensity from the pressure fluctuation according to the time change. As a result of flow analysis, it was confirmed that the noise intensity decreased as the number of diffusers and the number of splitters made of foamed aluminum increased. In the case of three-stage diffusers, the noise intensity decreased by up to 33.4 dB when six foamed aluminum with a thickness of 150mm were installed.
The overall process, from the pre-treatment of aluminum substrates to the eco-friendly neutral electroless Ni-P plating process, was observed, compared, and analysed. To remove the surface oxide layer on the aluminum substrate and aid Ni-P plating, a zincation process was carried out. After the second zincation treatment, it was confirmed that a mostly uniform Zn layer was formed and the surface oxide of aluminum was also removed. The Ni-P electroless plating films were formed on the secondary zincated aluminum substrate using electroless plating solutions of pH 4.5 and neutral pH 7.0, respectively, while changing the plating bath temperature. When a neutral pH7.0 electroless solution was used, the Ni-P plating layer was uniformly formed even at the plating bath temperature of 50 oC, and the plating speed was remarkably increased as the bath temperature was increased. On the other hand, when a pH 4.5 Ni-P electroless solution was used, a Ni-P plating film was not formed at a plating bath temperature of 50 oC, and the plating speed was very slow compared to pH 7.0, although plating speed increased with increasing bath temperature. In the P contents, the P concentration of the neutral pH 7.0 Ni-P electroless plating layer was reduced by ~ 42.3 % compared to pH 4.5. Structurally, all of the Ni-P electroless plating layers formed in the pH 4.5 solution and the neutral (pH 7.0) solution had an amorphous crystal structure, as a Ni-P compound, regardless of the plating bath temperature.
This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.