최근 방류수 수질 강화에 따라 총인 처리시설의 설치와 응집제 사용량이 증가하고 있다. 본 연구는 유입하수에 포함된 응집제 성분(Al3+, Fe3+ 등)을 활용하여 PO43-와 응집시킴으로써 하수처리공정에 별도의 응집제 주입 없이 총인 농도를 0.2mg/L 이하로 제거할 수 있는 MBR 하수처리공정을 개발하는 것이다. 활성슬러지와 차아염소산나트륨으로 제조한 알칼리슬러지를 MBR 공법의 생물반응조에 주입하여 적정 pH를 유지시킴으로써 유입하수 중의 용존성 이온을 상호 응집시켜 고형화 하였고 분리막으로 고액 분리하여 하수처리수의 총인 농도를 0.2mg/L이하로 달성하였다. 이 연구를 통해 개발한 공법은 응집제 주입 없이 하수처리수의 총인 농도를 0.2mg/L이하로 제거하여 약품비용을 절감에 기여할 것으로 예상된다.
Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL CH4/g VS was estimated under the optimum conditions at 62.0°C, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.
Carbonized concrete structure becomes superannuated gradually and its accelerated subsequent deterioration process leads to corrosion of steel while it ages. Recently economical and environmental concern about remodeling such superannuated concrete, including the basic structure of concrete, has been rapidly growing. Alkali restorative, which restores alkalinity in carbonized concrete structure, is used in the field of remodeling in order to improve the property of concrete structure. There have been many different kinds of materials which restore alkalinity in carbonized concrete. They can be classified according to their structural elements. This study focuses on the alkali restorative which mainly consists of silicic lithium metallic salt while examining the durable effectiveness of the factors (such as water permeation, surface erosion, elution of alkali, etc.), which will continuously affect concrete as deteriorating factors even after the restoration of alkali. The result shows that the alkali restorative consisting mainly of silicic lithium contributes to water-resistance, surface strength, and long term durability of alkali due to water permeation in carbonized concrete.
In this study, the effect of different reaction times for thermal-alkaline pretreatment on the solubilization and biogasification of polyhydroxybutyrate (PHB) were evaluated. Thermal-alkaline pretreatment tests were performed at 73 °C and pH 13 at 0-120 h reaction times. The mesophilic anaerobic batch tests were performed with untreated and pretreated PHB samples. The increase in the pretreatment reaction time results in a 52.8-98.8% increase of the abiotic solubilization efficiency of the PHB samples. The reaction time required to achieve solubilization efficiencies of 50%, 90%, and 95% were 10.5, 52.0, and 89.6 h, respectively. The biogasification of the untreated PHB samples achieved a specific methane production rate of 3.6 mL CH4/g VSS/d and require 101.3 d for complete biogasification. The thermal-alkaline pretreatment significantly improved specific methane production rate (10.2-16.0 time increase), lag time (shortened by 76-81%), and time for complete biogasification (shortened by 21-83%) for the biogasification of the PHB samples when compared to those of the untreated PHB samples. The improvement was higher as the reaction time of the thermal-alkaline pretreatment increased. The findings of this study could be used as a valuable reference for the optimization of the biogasification process in the treatment of PHB wastes.
The focus of this study is to investigate the ASR of concrete incorporating pre-treated soda-lime glass as aggregates. The glass aggregates were pre-treated with three different techniques, i.e. Ca(OH)2, NaOH and the mixed solution. The results indicate that all the pre-treatment techniques showed a decrease effect on ASR and such an effect increase with treatment time, the mixed solution showed the best effect. The pre-treated glass aggregate at the mixed solution at 80℃ for 7 days providing a 45% reduction in the expansion caused by ASR, and it can be considered innocuous based on ASTM C1260.
Due to a world trend on renewable energy, biomass that is one of renewable energy resources has to be applied at thermochemical process, actively. However, in commercial plant, one of many problems is an agglomeration production at biomass thermochemical process, because it leads to disturb continuous operation on thermochemical process. Thus, in this study, the EFB (empty fruit bunch), one of palm oil industry by-products was used as a biomass fuel, and washed by water and nitric acid solution (0.1wt.%) with different total washing times for resolving this problem at biomass thermochemical process. After washing, ash content was decreased from 5.9wt.% to 1.53wt.% using all of the washing treatments, and the Alkali & Alkaline Earth Metallic (AAEM) was removed over 80wt.% of total AAEM, such as potassium, magnesium, calcium and sodium. Additionally, SEM with XRD was analyzed to confirm the characteristics of produced agglomeration, and the agglomeration production ratio was measured: it revealed that the ratio was resulted in decrease over half, in the case of using all of washed EFBs.
The present study, a modified electrochemical treatment was applied to concrete to mitigate the leaching of alkali ions from concrete. The current ranged 500 mA/m2 and duration was 2weeks. Electrochemical treatment applied in concrete quantity of alkali ions leaching and the limit depth of concrete were decreased, through electrochemical treatment is very high inhibitory effect of the alkali ion is determined leaching.
The dechlorination processes and efficiencies of PCBs contained in transformer dielectric oils were investigated on three commercial-treatment companies. Alkaline dispersion method was used for dechlorination of PCBs mainly using molten metallic sodium or potasium hydroxide with PEG, and its dechlorination efficiency to whole congeners of PCBs was 98.94% on average. Homologues of highly-chlorinated biphenyls showed better efficiencies than those of less chlorinated ones, especially mono-chlorinated biphenyl in para-position (#2) was about 37 times enriched after chemical treatment. Co-planar PCBs' dechlorination efficiency was averaged as high as 99.78%, but 3,3',4,4'-TeCB was relatively low as 96.5%. It was suggested for better dechlorination efficiency to remove the water in transformer oil prior to chemical reaction and to stir the reagents more rapidly when using alkaline dispersion method.