검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        2.
        2012.04 구독 인증기관 무료, 개인회원 유료
        Recently, by the whole world paradigm shift to “Low Carbon Green Growth", it is required to renovate National Transportation and Logistics System. Transportation accounts for 21% of the total energy consumption and 20% of the total CO2 emission, and also places its main reliance on fossil fuels. From green point of view, electric railway system is superior to the other transportation alternatives, but also required to develop the innovative technologies for high efficiency and low energy consumption. In this paper, the concept of railway green operation system by regenerative synchronized driving is presented, including the numerical example and the estimated effect.
        4,000원
        3.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        Domestic automotive shredder residue (ASR) recycling facilities must comply with 60% of the energy recovery criteria calculated by the waste control act, based on resource circulation of electrical and electronic equipment and vehicles. The method of calculating energy recovery criteria was newly enacted on November 6, 2017, and it has been judged that it is necessary to consider applicability. In this study, the energy recovery efficiency of 7 units was calculated by past and present calculation methods. Furthermore, this study attempts to find applicability and a method of increasing the energy recovery efficiency by taking advantage of available potentials. An analysis of the calculation results showed that the average values calculated by past methods, present methods, and the method that includes available potentials are 76.35%, 70.68%, and 78.24%, respectively. Therefore, the new calculation method for energy recovery efficiency is also applicable to domestic automotive shredder residue recycling facilities.
        4.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        This study examined the potentials for greenhouse gas reduction by material recovery and energy recovery from municipal solid waste between 2017 and 2026 in Daejeon Metropolitan City (DMC), which is trying to establish a material-cycle society by constructing a waste-to-energy town by 2018. The town consists of energy recovery facilities such as a mechanical treatment facility for fluff-type solid refuse fuel (SRF) with a power generation plant and anaerobic digestion of food waste for biogas recovery. Such recycling and waste-to-energy facilities will not only reduce GHGs, but will also substitute raw materials for energy consumption. The emissions and reduction rate of GHGs from MSW management options were calculated by the IPCC guideline and EU Prognos method. This study found that in DMC, the decrease of the amount of MSW landfilled and the increase of recycling and waste-to-energy flow reduced GHGs emissions from 167,332 tonCO2 eq/yr in 2017 to 123,123 tonCO2 eq/yr in 2026. Material recycling had the highest rate of GHG reduction (-228,561 tonCO2 eq/yr in 2026), followed by the solid refuse fuels (-29,146 tonCO2 eq/yr in 2026) and biogas treatment of food waste (-3,421 tonCO2 eq/yr in 2026). This study also shows that net GHG emission was found to be -30,505 tonCO2 eq in 2017 and -105,428 tonCO2 eq, indicating a great and positive impact on future CO2 emission. Improved MSW management with increased recycling and energy recovery of material waste streams can positively contribute to GHGs reduction and energy savings. The results of this study would help waste management decision-makers clarify the effectiveness of recycling MSW, and their corresponding energy recovery potentials, as well as to understand GHG reduction by the conversion.
        5.
        2018.05 서비스 종료(열람 제한)
        폐기물은 발생원을 기준으로 생활폐기물, 사업장폐기물 및 건설폐기물로 구분된다. 폐기물 처리는 재활용을 우선적으로 정책이 이루어지고 있다. 그러나 폐기물을 재활용하기 위해서는 기술적인 한계성과 경제성 등이 해결되어야 하며 이러한 이슈가 극복되지 않으면 재활용에는 한계가 따른다. 국내에서 도입된 네가티브 재활용 제도가 다양한 기술을 재활용로서 적용될 수 있도록 하였으며, 그 중 폐기물 에너지화 기술로써만 인식되어온 폐기물 가스화 기술은 에너지회수 기술 뿐 만 아니라 원료를 대체할 수 있는 재활용 기술로도 적용될 수 있게 되었다. 폐기물의 재활용은 물질재활용 기술로서 3R기술 위주로 재활용되어 왔으나 화학전환 기술에 의한 재활용을 위해서는 가스화 기술이 많은 기여를 할 것으로 기대된다. 또한 폐기물의 에너지 회수기술은 소각에 의한 에너지회수 또는 고형연료를 생산하여 연소보일러에 의한 에너지회수 방법이 주로 이용되어 왔으며 이러한 기술은 열에너지를 회수하는 기술에 국한되어 있다. 그러나 폐기물 가스화 기술은 열에너지와 화학에너지의 생산이 가능하므로 다양한 에너지로의 회수 기술과 고효율 에너지 이용기술의 적용이 가능한 기술이다. 따라서 본 연구에서는 폐기물 가스화를 통한 에너지회수 기술과 화학전환 기술로서 원료대체를 통한 재활용 기술로서의 특성을 고찰하였다. 폐기물 가스화 기술은 가연성물질이 함유된 폐기물의 대부분을 대상으로 적용이 가능하지만 합성가스를 이용하는 기술에 따라서 합성가스의 생산품질을 만족하기 위해서는 폐기물의 적정 발열량이 확보되어야 된다. 폐기물의 종류에 따라 기준은 달리 적용되겠지만 저위발열량 기준으로 3,200 kcal/kg이상인 경우 안정적인 합성가스를 생산할 수 있다고 판단되며, 폐기물종류 및 이용기술에 따라서는 3,000 kcal/kg이상인 경우 합성가스 생산품질을 유지할 수 있다. 폐기물 가스화를 통해 생산된 합성가스를 에너지회수 기술로서는 스팀터빈, 가스터빈, 가스엔진, 연료전지 등의 기술을 적용할 수 있고, LNG, 경우, 석탄, LPG 등 화석연료를 대체하는 가스연료로 적용할 수도 있다. 또한 합성가스의 주요성분인 일산화탄소와 수소는 고순도 수소 및 고순도 일산화탄소 자체로도 원료대체가 가능하며, 화학촉매 또는 미생물촉매 전환 공정을 통해 다양한 화학원료로 대체하는 재활용기술로서의 적용이 가능한 특성을 가지고 있다.
        6.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        In this study, we analyzed all of the waste streams associated with household waste to provide a basis for incorporating the individual characteristics of municipalities in setting targets for waste-to-resource circulation. Toward this end, we examined how household waste is treated based on the disposal method (mixed waste disposed of in standard volumerate garbage bags, separation recyclable waste, and food waste) and the amount of residuals generated at their respective treatment facilities. The actual recycling rate or actual waste-to-energy conversion rate was calculated as the ratio of the actual amount of waste that is recycled or converted to energy against the amount of waste intake at waste treatment facilities. The conversion factor of actual recycling rates at 17 municipalities showed an average of 63.9% for public material recovery facilities (MRFs) with those for individual municipalities ranging from 50.4% to 93.2%, and an average of 93.8% for private and public food waste treatment facilities with slightly higher rates found for public facilities (70.4 ~ 100%) than private facilities (63.3 ~ 100%). The actual waste-to-energy conversion factor was 59.3% on average for combustible waste-to-energy facilities (17.2 ~ 72.3%) and 92.0% on average for biological waste-to-energy facilities (77.1 ~ 99.5%). To achieve the national target for the actual recycling rate, additional strategies for recycling or converting the residuals generated at recycling or combustible waste-to-energy facilities into resources are needed. The actual recycling and waste-to-energy conversion rates provided in this study based on a full examination of household waste streams hold valuable insights for incorporating the individual situations of municipalities in setting their targets for wasteto- resource circulation indicators and creating new strategies for improving the actual recycling rate.
        7.
        2017.05 서비스 종료(열람 제한)
        본 연구에서는 지자체의 권역별‧지역별 특성을 고려한 자원순환 목표 설정을 도모하기 위해 가정생활폐기물을 대상으로 폐기물 처리 전과정 흐름분석을 실시하였다. 이를 위해 가정생활폐기물 배출형태(종량제봉투, 재활용품 및 남은 음식물류)에 따라 어떤 처리흐름에 따라 처리되는지를 살펴보고, 그 과정에서 잔재물로 배출되는 양 또는 재활용시설 등을 거쳐 추가적으로 최종 처분되는 양 등을 파악하였다. 여기서 폐기물 실질 재활용률 또는 실질 폐기물에너지화율은 폐기물 처리시설 반입량 대비 실질 재활용량 또는 실질 폐기물에너지화된 양(반입량-잔재물 발생량)을 의미한다. 17개 지자체의 실질 재활용률은 재활용품 선별시설의 경우 평균 72.2%로 50.4-93.2%의 범위를 나타내고 있으며, 음식물류폐기물 자원화시설의 경우 공공시설 평균은 90.9%, 범위는 72.2-100%이며, 민간시설 평균은 94.0%, 63.3-100%의 범위를 나타내고 있다. 실질 에너지화율은 가연성폐기물 연료화시설의 경우 평균 41.5%로 17.2-72.3%의 범위를 나타내고 있으며, 유기성폐기물 에너지화시설의 경우 평균 91.5%로 77.1-99.5%의 범위를 나타내고 있다. 이를 기초로 17개 지자체의 순환이용률을 산정한 결과, 평균 41.5%, 28.4-59.6%의 범위를 나타내고 있다. 국가의 자원순환 목표인 순환이용률 달성을 위해서는 재활용품 선별시설 및 가연성 에너지화시설 잔재물의 2차 재활용 또는 에너지화 방안을 추가적으로 강구할 필요가 있다. 본 흐름분석을 통해 산출된 실질 재활용률 및 실질 폐기물에너지화율을 기반으로 지자체의 현실을 반영한 자원순환 목표지표 설정이 가능할 것이며, 순환이용률 향상 방안 마련을 위한 기초자료로 활용될 것이다.
        8.
        2016.01 KCI 등재 서비스 종료(열람 제한)
        Aluminum can is one of the common and economically valuable recycling items in municipal waste streams. In this study, the reduction rate of the greenhouse gas emission and energy savings were estimated when aluminum cans are recycled by using material flow analysis, US EPA WARM method, and EU Prognos method. Based on the results, approximately 16,630 ton of aluminum in 2010 was recovered as ingot, while 10,873 ton of aluminum can to can recycling occurred in the same year. The reduction rate of aluminum recycling was estimated to be 240,986 tCO2eq/yr by US EPA WARM method, while about 305,283 tCO2eq/yr was found by the recycling using EU Prognos method. The difference resulted partly from the different system boundary and the loss rate during aluminum recycling process. The results of the energy savings and greenhouse gas reduction rate would be valuable for waste management policy makers to estimate the potential reduction rate of greenhouse gas by aluminum can recycling and accelerate recycling infrastructure of waste streams. This study also implies that the applications and results of both methods to estimate greenhouse gas reduction rates by aluminum can recycling should be carefully reviewed and acknowledged before the use of the method due to the different assumptions and results that are anticipated.