Invasive species compete with native species and damage ecosystems. Due to their limited resources, island ecosystems are vulnerable to impacts of invasive species. In the Deokjeok archipelago, South Korea, invasive sika deer (Cervus nippon ssp. taiouanus) introduced for economic purposes are causing harm through severe browsing. This study aimed to evaluate long-term browsing impacts of invasive deer by tracking vegetation index changes from 1986 to 2020 with Landsat satellite imagery and the LandTrendr algorithm. We compared vegetation index trend using Sen’s slope and Disturbance/Recovery area ratio (D/R ratio) between Gureop-do, where these deer were introduced with rapid population increase, and Deokjeok-do, Baega-do, and Mungapdo where these deer have not been introduced yet. Results showed a decreasing trend of the vegetation index in Gureop-do, while other islands without those deer increased. The cumulative D/R ratio on Gureop-do was 212.44%, meaning that disturbance exceeded the recovery area more than two-fold. In contrast, the D/R ratios for other islands remained under 50%. Sen’s slope and t-test showed a significant decrease of NDVI in Gureop-do after deer introduction in 2000. By quantifying the browsing impact of invasive ungulates in island ecosystems using satellite imagery, time and costeffective strategies for invasive species monitoring are provided.
Following the implementation of the Act on the Prevention of Light Pollution Due to Artificial Lighting in 2013, local governments designated lighting environment management zones and conducted assessments of the impacts of light pollution on the environment to ensure compliance with acceptable light emission standards. In addition, according to the Act on the Prevention of Light Pollution Due to Artificial Lighting, local governments conduct and manage light pollution assessments every three years. However, measuring and analyzing during nighttime requires a significant amount of time and labor. Therefore, this research aims to improve the current light pollution environmental impact assessment method by utilizing aerial information from satellite data and establishing a database of light pollution assessment methods, thereby laying the foundation for light pollution management. In this study, a reference light source was installed on the ground, and the luminance measurements of the installed reference light source and the advertising light sources on-site were analyzed to derive brightness values for ground light sources using the optical band (R, G, B) values from aerial information derived from satellite images. The analysis produced predictive equations for light pollution from upward lighting and general advertising lighting. When these equations were applied to residential and commercial areas in the lighting environment management area, the results indicated that the predicted rooftop upward lighting prediction brightness exceeded the acceptable standard of light emission of 800 cd/m2 in residential areas, and the advertisement lighting prediction brightness exceeded the standard of 1,000 cd/m2 in commercial areas.
보행 활동은 도시의 교통 및 환경 문제, 주민의 건강, 지역 커뮤니티 활성화 등에 중요한 역할을 하는 것으로 평가되고 있다. 보행의 중요성이 인지되면서 세계각국에서는 보행을 장려하는 도시건조환경을 만들기 위해 다양한 노력을 기울이고 있으 며, 이는 우리나라에서도 법제도적으로 나타나고 있다. 보행환경을 관리하고 개선하기 위해서는 물리적인 보행환경을 가로 단위 상세수준에서 평가하고, 시민들의 보행환경에 대한 인지가 어떤지를 아는 것이 필요하다. 기존에 이러한 연구들은 대부분 설문조사나 일부지역에 한 해 현장조사를 수행하는 방법이 주를 이루었다. 본 연구에서는 거리영상과 딥러닝 기술을 활용하여 가로단위 상세수준에서의 물리적 보행환경과 인지적 보행환경을 평가하고, 이를 비교하고자 한다. 물리적 보행환경 평가를 위해 평가지표를 선정하고, 평가지표별로 거리영상의 시멘틱 세그먼테이션 기법을 활용하거나 표고 자료, PoI자료를 크롤링한 후 관련 데이터를 구축하고 평가점수를 도출하였다. 인지적 보행환경 평가를 위해 거리영상에 대한 인지를 예측할 수 있도록 훈련데이타 셋을 구축하고, RSS-Swin모델을 훈련시켜 보행환경 인지점수를 예측할 수 있도록 하였다. 물리적 보행환경과 인지적 보행환경 지도를 구축하고, 각각의 특성과 차이를 분석하고, 이를 통해 보행환경 개선안을 도출할 수 있었다. 본 연구는 물리적 보행환경과 인지적 보행환경의 시각화하고 차이를 분석하여 개선안을 도출하였다는 점에 연구의 의의가 있으며, 기술적인 측면에서는 거리영상과 딥러닝 기술을 활용하여 도시의 가로단위에서 보행환경을 상세하게 평가할 수 있는 방법론을 체계화하였 다는 점에 의의가 있다
자기공명영상 평가 시 정확한 영상평가를 방해하는 요인에는 여러 가지가 있다. 그중 측정자로 인한 관심 영역의 크기 설정도 여러 요인 중 하나인데, 아직 다른 요인에 비해 관심 영역의 크기 설정은 연구가 부족한 실정이다. 이에 본 연구에서는 관심 영역의 크기 변화에 따른 SNR의 변화를 통계적으로 비교·분석하여 설정하는 방법을 제시하고 그 유용성을 증명하고자 하였다. 연구 방법은 팬텀의 T1, T2 강조영상을 획득한 다음 획득한 영상에 관심 영역의 크기를 변화시켜 신호강도를 측정한 후 관심 영역의 크기 변화에 따른 SNR 산출하여 비교평가 하였다. 연구 결과 T1 강조영상은 관심 영역의 크기 설정 시 20% 이하, T2 강조영상은 40% 이하로 설정할 때 기준 관심 영역 크기와 SNR이 통계적으로 차이가 없었다. 결론적으로 관심 영역의 크기 설정 시 본 연구의 통계를 이용한 설정 방법을 적절히 활용하여 측정을 시행한다면 관심 영역 크기 설정의 합리적 근거를 마련할 수 있어 유용하리라 판단된다.
본 연구는 뇌 DWI에서 딥러닝 적용 시 48채널과 8채널 헤드 코일 간 영상 품질의 차이를 분석하는 것을 목표로 하였다. 3.0T MRI를 사용하여 두 종류의 코일을 비교하였으며, 딥러닝 알고리즘의 효과를 확인하기 위해 SNR(신호 대 잡음비), ADC(겉보기 확산 계수), SSIM(구조적 유사성 지수)을 측정하였습니다. 연구 결과에 따르면, 딥러닝 적용 후 b-value에 따른 두 코일 간의 차이가 나타났다. 특히 b-value 0 및 1000에서는 딥러닝 적용 전후에 두 코일 간 통계적으로 유의미한 차이가 없었지만, b-value 3000에서는 적용 전후 모두에서 유의미한 차이가 있었다. SSIM 분석에서도 딥러닝 적용 전후 차이는 없었으나, b-value에 따른 차이가 측정되었습니다. 이러한 차이는 영상 판독에 영향을 미칠 수 있으며, 이를 개선하기 위해서는 딥러닝 알고리즘이 부위별, 코일별, 펄스 시퀀스별로 최적화 될 필요가 있다. 따라서 본 연구는 향후 딥러닝 기반 MRI 영상의 정확도와 일관성을 높이기 위한 기초 정보를 제공 하며, 임상적 적용에서 부위별, 수신 코일별, 펄스 시퀀스별로 세분된 딥러닝의 최적화가 필요하다.
급성 뇌경색 진단에는 환자에 따라 관류강조영상과 조영증강 자기공명혈관영상이 동시에 촬영되는 경우가 있으며, 이 과정에서 MRI 조영제인 가돌리늄의 T1 단축 효과가 발생하여 동맥과 정맥의 신호 겹침이 빈번히 발생한다. 특 히, 3D T1 경사에코 기법을 사용한 CE-MRA에서 첫 번째 조영제 주입(PWI) 후 연속적으로 발생하는 T1 감소 효과로 인해 혈관의 정확한 묘사에 한계가 있었다. 본 연구에서는 이러한 문제를 해결하기 위해 마스크 영상의 획득 시점을 조정하여 새로운 방법(B)을 제안하였다. 기존 방법(A)에서는 관류강조영상 이전에 마스크 영상을 획득했지 만, 새로운 방법(B)에서는 관류강조영상 이후 마스크 영상을 획득하여 동맥과 정맥 신호 겹침을 효과적으로 줄였다. 연구 결과, S상 정맥동과 내경정맥에서 새로운 방법이 기존 방법보다 유의미하게 낮은 대조대잡음비를 보였으며, 신호 겹침이 줄어들어 정맥 신호의 억제 효과가 극대화되었다(p<0.05). 본 연구의 새로운 방법은 기술적으로 추가적 인 복잡성 없이 효율적으로 정맥 신호를 제거하여 CE-MRA 영상의 진단적 정확성을 향상하는 유용한 기법으로 평 가된다. 향후 연구에서는 더 다양한 환자군을 대상으로 본 방법의 유용성을 검증하고, 최적의 방안 모색을 할 필요가 있다.
간 동적 조영검사에 사용하고 있는 VIBE 시퀀스의 고식적인 방법과 딥러닝 방법에 관한 선행된 연구가 부족하여 영상의 평가와 검사의 방향성 및 타당성을 제시하고자 한다. ACR 팬텀 실험은 30회 반복 실험하였고, 저 대조도 분해능 평가영역 에서 syngo.via View&Go를 이용하여 신호대잡음비와 대조대잡음비를 평가하였고, 공간분해능 평가영역에서 MATLAB 을 통해 신호강도의 높이와 반치폭으로 공간 분해능을 평가했다. 팬텀 실험을 기준으로 Matrix 352를 설정하여 30명의 환자 실험을 했다. 간 실질, 간 문맥, 내림 대동맥에서 대조대잡음비를 평가했고, 공간 분해능은 간 문맥, 내림 대동맥의 경계면을 평가했다. 결과 분석은 이원배치 분산 분석으로 진행하고, 사후 분석은 Duncan을 사용했다. 통계분석은 정량적 으로 p-value 0.05 미만으로 유의한 것으로 판단했다. 팬텀 실험의 신호대잡음비와 대조대잡음비 결과는 Matrix 416 이하에서 유의하였으며, 공간분해능 결과는 고식적인 방법 Matrix 352 이하, 딥러닝 방법 288 이하에서 평가할 수 없었 다. 환자 실험 결과는 신호대잡음비, 대조대잡음비, 공간분해능 모두 유의했다. 본 연구는 고식적인 방법보다 딥러닝 방법 이 영상은 더 향상되었고, 획득 시간은 평균 4초(22.4%)가 단축되었다. 딥러닝 방법에서 Matrix 352를 적용하였을 때 검사 시간의 감소로 재현성과 호흡에 의한 인공물 감소가 있었다. 이에 딥러닝 방법에서 Matrix size 적용의 방향성을 제시할 수 있었다.
본 연구는 수직 벽체형 콘크리트 구조물의 정밀안전진단을 위한 외관조사시 고품질 정밀영상을 자동화된 방식으로 획득하여 균열손상을 탐지하고 시설물의 상태를 평가하기 위하여 개발된 등벽드론 탑재형 균열진단 시스템에 대한 것이다. 본 논문에서는 영상기반 균열진단 시스템을 이용한 정밀영상 획득기술, 자동화된 영상처리 알고리즘을 이용한 데이터 처리 기법을 제시하였으며, 실험적으로 도출된 지상표본거리를 기반으로 영상처리 자동화 알고리즘을 이용하여 생성된 균열모사 시험벽체의 평면전개 이미지 상 균열손상의 위치 정확도를 평가 분석하였다. 평가분석 결과, 가로축 길이 대비 최대 1.1%, 세로축 길이 대 비 최대 1.4%의 오차율을 보이는 것으로 나타났다. 제안된 영상 내 픽셀 좌표와 지상표본거리를 기반으로 균열손상의 위치를 추정하는 기법은 실측 좌표 대비 평균 1.0% 이하의 위치 오차를 가지는 것으로 평가되었다. 최종적으로 영상기반 진단과 긴급 보수와 같은 일반적인 시설물의 유지관리에 요구되는 위치 정확도를 확보하고 있는 것으로 분석되었다.
Forest destruction is an inevitable result of the development processes. According to the environmental impact assessment, over 10% of the destroyed trees need to be recycled and transplanted to minimize the impact of forest destruction. However, the rate of successful transplantation is low, leading to a high rate of tree death. This is attributable to a lack of consideration for environmental factors when choosing a temporary site for transplantation and inadequate management. To monitor transplanted trees, a field survey is essential; however, the spatio-temporal aspect is limited. This study evaluated the applicability of remote sensing for the effective monitoring of transplanted trees. Vegetation indices based on satellite remote sensing were derived to detect time-series changes in the status of the transplanted trees at three temporary transplantation sites. The mortality rate and vitality of transplanted trees before and after the transplant have a similar tendency to the changes in the vegetation indicators. The findings of this study showed that vegetation indices increased after transplantation of trees and decreased as the death rate increased and vitality decreased over time. This study presents a method for assessing newly transplanted trees using satellite images. The approach of utilizing satellite photos and the vegetation index is expected to detect changes in trees that have been transplanted across the country and help to manage tree transplantation for the environmental impact assessment.
본 연구에서는 DWI 적용 시 X축 거리에 따른 신호 손실과 인공물 발생 여부를 SS-EPI 기법과 비교 분석하여, MS-EPI 기법의 특성을 제시하고 임상 적용 관련 기초자료를 제시하고자 하였다. 3.0T 자기공명영상장치와 팬텀을 사용 하여 자기장 중심축과 좌우 끝 지점 ±3cm, 3번씩 움직여 표준 영상인 T2 강조영상과 SS-EPI DWI, MS-EPI DWI(RESOLVE) 축상면 영상을 획득하였다. 각 동일 부위에서의 SS-EPI DWI, MS-EPI DWI 영상을 T2 강조영상과 감산하여 신호 손실 직경을 측정하여 정량적 분석을 하였다. 정성적 평가는 나이퀴스트 허상과 기하학적 왜곡과 신호 손실, 인공물 발생 여부를 방사선사 3명이 비교평가 하였다. 두 기법 모두 오프 센터(off-center)로 이동할수록 신호 손실구간 또는 기하학적 왜곡이 나타나는데, 특히 MS-EPI 기법에서는 좌우 신호 손실 현상이 매우 증가해 –25, +25 cm 구간에서 는 약 50% 길이가 감소하였다. MS-EPI 기법은 근골격계 질환에서 기존에 매우 높은 영상 유용성을 인정받고 있다. 그러 나 k-공간을 분할 하여 채우는 MS-EPI 기법은 오프 센터의 낮은 공간 주파수 획득 시 위상변동 보정이 안 되어 신호 손실구간이 나타나며, 이에 관한 연구는 전혀 없는 실정이다. 이에 따라 본 연구는 기존의 선행 연구에서의 보여주지 못한 임상적 적용 시 MS-EPI 기법의 문제점을 파악하면서 이러한 정보를 공유하고 추가적인 연구에 토대가 될 수 있는 기초를 마련했다는 점에 의의가 있다.
최근 3차원 영상 데이터 활용 기술이 주목받으며 레이저 스캐너, 깊이 카메라와 같은 장비를 활용하여 작물의 생육을 측정하려는 연구가 시도되고 있다. 작물의 생육 특성을 측정할 때 3차원 영상 데이터를 활용한다면 평면 데이터에서 측정하지 못한 구조와 형태 정보를 이용할 수 있는 장점이 있다. 본 연구에서는 콩의 생육 특성을 3차원 영상 데이터를 활용하여 추정하였다. 깊이 카메라를 이용하여 콩의 개화시(R1), 착협기(R3), 종실비대기(R5) 에 촬영하고 3차원 데이터로 개체의 초장과 엽면적을 추정하고 실측 값과 비교하였다. 초장 추정을 위해 평면에 투영된 개체의 무게 중심을 이용하여 원줄기의 x, y 좌표 위치를 지정하였는데 눈으로 보고 지정한 원줄기의 위치와 무게 중심 점의 x, y 좌표 위치는 높은 결정 계수를 보였다. 초장 추정의 경우 콩의 구조와 형태가 발달함에 따라 3차원 영상에서 지면으로부터 개체 상단 지점 간 거리를 이용하는 방법은 실측과 추정 값간 오차가 컸다. 엽면적 추정을 위해서 3차원 위치 값을 갖는 개체 표면 점들을 높이에 따라 분할하고 각 높이 구간의 면적을 계산하였다. 3차원 데이터 병합 과정에서 늘어난 점 개수로 인해 각 높이 구간에서 계산된 면적이 증가하였기 때문에 추정 값은 과대평가되었다. 향후 3차원 영상을 이용한 보다 정밀한 생육 조사를 위해서는 작물 고유의 생육변수 특성을 고려한 데이터 전처리 과정과 분석 방법 개발이 필요할 것으로 사료된다.
신안군 해역의 섬을 통한 관광사업이 활발해지면서 도서 간을 연결하는 해상교량은 현재까지 총 13개가 완공되었다. 그러나 통항로에 설치된 해상교량은 선박통항에 있어 위험성을 주며, 특히 섬과 섬을 연결하는 연도교의 경우 수로의 폭이 매우 좁아 그 위험도 는 더욱 높다. 본 연구는 신안군 해역의 연도교에 대한 해상교통조사를 토대로 교각과 선박의 충돌위험도를 항만수로의 위험도 평가 모 델인 IWRAP(IALA Waterway Risk Assessment Program)을 활용하여 평가하였다. 그 결과 신안1교가 충돌확률이 가장 높은 것으로 분석되었으 며, 통항선박의 대부분은 연안 여객선으로 나타났다. 또한, 신안1교는 대상해역의 교각 중 가장 충돌사고가 많이 발생한 곳으로 본 연구 에서는 그 원인을 분석하고자 하였다. 신안1교 해역환경의 위성사진을 영상처리기법으로 분석한 결과 해도에는 볼 수 없는 장애물이 교 량 근처에 존재하는 것을 확인할 수 있었다. 이로 인해 장애물을 피해 교량의 통항유도방식인 양방향 통항과 달리 한 방향으로 통항이 집 중되는 것을 알 수 있었다. 본 연구의 영상처리기법을 활용한 위험원인 분석방법은 향후 연도교의 위험요인 분석을 하는데 기초자료로 활용될 수 있을 것으로 기대된다.
MRI는 인체에 수소 밀도에 따른 재현성의 차이가 상대적으로 기존의 영상 장비들에 비교하여 큰 차이가 있으므로 임상 에서 이를 증명하고 문제 발견 시 이를 보완하는 것이 딥러닝 알고리즘은 매우 중요하다. 따라서 본 연구에서는 현재 특수 의료장비에서 권하는 미국 방사선 의학회(American College of Radiology, ACR)의 두부 전용 MRI 팬텀을 사용하여 영상 품질기준에 현재 임상 적용되고 있는 딥러닝 알고리즘 방법을 적용하여 딥러닝 알고리즘 적용 전후 변화를 평가해 보고자 하였다. 연구 결과 분해능을 측정하는 항목인 고대조도 공간 분해능과 같이 해상도와 관련된 영상 품질은 분해능은 개선되었음을 알 수 있었고, 그뿐만 아니라 위치의 정확도 역시도 기존에 딥러닝 알고리즘의 적용 전 영상과 통계적으로 차이가 있었다. 또한 딥러닝 알고리즘의 강도 차이에도 영상 간 차이는 없었다. 이러한 결과는 특수의료장비 영상품질관리 규정에 적용되고 있는 ACR 팬텀의 평가 기준에 부합 하나, 딥러닝 알고리즘 적용 전후 차이가 통계적으로 있었으며, 이러 한 차이가 재현성과 관련하여 추후에 조금 더 관련된 연구기 필요할 것으로 사료된다.
자기공명영상장치(magnetic resonance, MR)/양전자 방출 단층촬영 장치(positron emission tomography, PET)는 두 가지 의료장치가 결합한 하이브리드 시스템으로써 MR의 해부학적 정보와 PET의 기능적 정보를 동시에 획득할 수 있는 최신 의료장치이다. 일반적으로 MR/PET의 우수한 팬텀 영상의 질 획득과 평가를 위하여 팬텀 내에 전기전도도가 낮은 액체 물질과 방사성동위원소를 주입하고, UTE MR 펄스 시퀀스를 적용한 감쇠 보정된 PET 영상을 획득한다. 본 연구의 목적은 MR/PET 전용 팬텀에서 물 대체물질로써 NaCl과 NaCl+NiSO4 물질에 따른 UTE MR 펄스 시퀀스를 획득하고, 감쇠 보정된 PET 영상의 질을 평가하고자 한다. 정량적 분석을 위하여 대조도 회복비(contrast recovery, CR), 신호대잡 음비(signal to noise ratio, SNR), 변동 계수(coefficient of variation, COV)를 적용하였다. NaCl 물질 기반 UTE MR 펄스 시퀀스를 적용한 PET 영상의 질이 CR은 1.38배, SNR은 1.18배가 증가하였고, COV는 1.18배 감소함을 확인할 수 있었다. 결론적으로, MR/PET 전용 팬텀을 활용한 신호의 획득 가능성을 확인하였고, UTE MR 펄스 시퀀스는 해부학 적 정보와 PET 영상의 질 향상에 필수적임을 확인할 수 있었다.