검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 265

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세계적인 환경 규제로 인해 마그네슘 합금과 같은 경량 소재에 대한 수요가 증가하고 있으며, 마그네슘 합금 소재의 다양한 산업계 적용을 위한 용접 및 접합 방식에 대한 연구도 지속적으로 수행되고 있다. 앞선 Part I 연구에서는 마그네슘 합금에 대한 파이버 레이저 Bead on Plate(BOP) 실험을 수행하여 맞대기 용접 조건의 확보를 위한 기초 연구를 수행하였으며, 본 연구에서는 Part I의 기초 BOP 실험에서 도출된 적합한 레이저 출력과 용접 속도를 바탕으로 두께 3mm의 AZ31B 마그네슘 합금에 대해 맞대기 용접을 시행하였고, 인장시험 및 경도시험을 수행한 후 기계 물성 데이터를 분석하였다. 분석 결과 레이저 출력 2.0 kW, 50 mm/s (Heat input)의 조건에서 항복강도 151.5 MPa, 인장강도 224.1 Mpa으로 우수한 인장, 항복강도를 얻을 수 있었다.
        4,000원
        2.
        2024.04 구독 인증기관·개인회원 무료
        본 연구에서는 용접 여부에 따른 세 가지 유형의 철계-형상기억합금(Fe-Shape Memory Alloys, Fe-SMA)의 고주기 피로 거동에 대한 실험적 연구를 수행하였다. 본 연구를 위해 사용된 Fe-SMA은 스위스 EMPA에서 개발된 Fe-SMA으로, Fe-17Mn-5Si-10Cr-4Ni-1(V,C)의 화학적 조성을 가진다. 용접 여부 및 열처리 여부를 변수로 한 비용접, 용접, 열처리된 용접 시편이 ASTM E606/E606M 표 준에 따라 제작되었다. Fe-SMA의 재료적 특성을 평가하기 위해 직접 인장 실험 및 회복 실험이 수 행되었으며, 용접된 Fe-SMA의 피로 거동 평가를 위해 응력 진폭에 따른 피로 시험이 수행되었다. 피 로 시험은 최대 응력 수준을 Fe-SMA 극한 인장강도의 약 70%인 700MPa에서부터 100MPa씩 감소 시키며, 200MPa의 응력 범위까지 수행되었으며, 응력비(R)는 0으로 설정되었다. 피로 한계는 ASTM E1823-13에 따라 하중 반복 횟수 200만 회를 기준으로 하여 각 시편의 피로 한계를 확인하였다.
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the change in fracture properties after friction stir welding on Al606. In the L-T direction test, the fracture toughness of the unwelded base material was 275 MPa, and the specimen subjected to friction stir welding (FSW) was 227 MPa, showing that the fracture toughness decreased significantly with friction stir welding. In the T-L direction test, the difference between the base material and the weld material was not large, but the fracture toughness was shown to decrease during welding. In the comparison of the L-T direction and the T-L direction, it was found that both the base material and the weld material showed high fracture toughness in the L-T direction.In this study, the following conclusions were obtained after friction stir welding of Al 6061-T6.
        4,000원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Power converter devices require a high level of quality because they have a high direct connection with vehicle operation. Therefore, structural bonding was carried out by friction stir welding with excellent mechanical properties. Friction stir welding can cause structural deflection depending on the load of the welding tool, so it is important to control this for high quality flatness. In this study, pre-welding was performed before welding to minimize deflection generated during welding. And deflection reduction data according to the location of pre-welding were analyzed through dynamic analysis. As a result, based on computerized data rather than experimental data an optimized position of pre-welding was secured to minimize the deflection that occurs during friction stir welding. Through this, a process guide that enables high quality structural bonding was presented.
        4,000원
        7.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquified hydrogen is considered a new energy resource to replace conventional fossil fuels due to environmental regulations by the IMO. When building tank for the storage and transportation of liquified hydrogen, materials need to withstand temperatures of -253°C, which is even lower than that of LNG (-163°C). Austenitic stainless steel mainly used to build liquified hydrogen tank. When building the tanks, both the base material and welding zone need to have excellent strength in cryogenic condition, however, manual arc welding has several issues due to prolonged exposure of the base material to high temperatures. Laser welding, which has some benefits like short period of exposure time and decrease of thermal affected zone, is used many industries. In this study, laser bead on plate welding was conducted to determine the laser butt welding conditions for STS 304 and STS 316L steels. After the BOP test, cross-section observations were conducted to measure and compare four bead parameters. These tendency result of laser BOP test can be used as conditions laser butt welding of STS 304 and STS 316L steel.
        4,000원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
        4,000원
        12.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for LNG Carrier and LNG fuel ships are increasing due to global carbon neutrality declaration and ship emissions regulation of IMO, domestic shipyards pay technology fees(about 5~10% of ship price per vessel) to GTT company in France for making LNG cargo hold. Localization of LNG cargo hold is needed to reduce technology fees and engage technological competitiveness, it is important to secure the critical technology like automation process development of insulation system process. Especially, the automation rate of membrane-type insulation system is very low due to interference caused by corrugation and difficulty in securing optimal variable welding condition. In this study, to solve this problem, automatic welding is performed using developed automatic welding equipment on STS304L steel which is used in flat and corner area of membrane-type LNG cargo hold's lap joint. After welding, Cross-sectional observations and Tensile strength tests were conducted to evaluate reliability of equipment and welding condition. As a result of the test, it was confirmed that the strength of the welded zone exceeded that of base material, and secured the optimal welding condition to apply automatic welding.
        4,000원
        13.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is essential to select materials with excellent mechanical properties to prevent chemical and mechanical damage to the surfaces of materials used in machines and structures and to extend their lifespan. Co-based stellite alloy, which has wear resistance, heat resistance, and corrosion resistance, is essential for products used in harsh environments. However, due to the problem of enormous costs, research on hard facing, which uses a stellite coating layer only on the contact surface, is urgently required. Currently, high-facing research on Stellite coating layers is focused on powder, and GMAW research using wire is relatively lacking. In this study, welding experiments were performed to form stable weld beads using stellite 6 welding wire, and the correlation between parameters and weld beads was analyzed. A CMT welder was used to minimize the heat effect on the base material.
        4,000원
        14.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we proposed a simulator for the development of a digital multi-process welding machine and a welding process monitoring system. The simulator, which mimics the data generation process of the welding machine, is composed of process control circuit, peripheral device circuit, and wireless communication circuit. Utilizing this simulator, we aimed to develop a welding process monitoring system that can monitor the welding situations of four multi-process welding machines and three processes each, with data transmission through wireless communication. Through the operation of the proposed simulator, sequential digital processing of multi-process welding data and wireless communication were achieved. The welding process monitoring system enabled real-time monitoring and accumulation of the process data. The selection of upper and lower limits for process variables was carried out using a deep neural network based on allowable changes in bead shape, enabling the management of welding quality by applying a process control technique based on the trend of received data.
        4,000원
        15.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5–24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.
        4,000원
        16.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum material, which has excellent corrosion resistance, durability, and light weight, is widely used in the field of shipbuilding, and welding is an essential technology in shipbuilding. currently, welding is efficiently used to assemble structures of various sizes in the shipbuilding process, but aluminum is a very sensitive material at high temperatures and in a molten state, so appropriate process control is essential. research on aluminum welding has been continuously conducted, but most of the research is on the butt welding method. therefore, in this study fillet welding experiments, which are essentially applied to the internal structure of aluminum ships, were performed and the correlation between welding beads and process variables was identified. for the welding experiment GMA fillet welding was performed on Al5083 material used in the shipbuilding industry, and the influence of the process variable was confirmed by analyzing the correlation through the analysis of the etched fillet weld bead cross section for the test result according to the process variable.
        4,000원
        17.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Demand for research on the use of hydrogen, an eco-friendly fuel, is rapidly increasing in accordance with global environmental problems and IMO environmental regulations in the shipbuilding and marine industry. In the case of hydrogen, similar to liquefied natural gas, it has a characteristic that its volume decreases hundreds of times during phase transformation from gas to liquid, so it must be stored in a tank in the form of liquefied hydrogen for transport efficiency. The material of the liquid hydrogen tank is selected in consideration of mechanical properties and hydrogen embrittlement at cryogenic temperatures. In this study, welding research was conducted on STS316L material, which was most commonly used in the space industry. In this study, flux cored arc welding was performed under 4 welding conditions to derive the optimal welding conditions for STS316L material, and then mechanical properties of the welded part were compared and analyzed.
        4,000원
        19.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stainless steel is used in many industrial fields due to its excellent properties such as workability, strength, ductility, and corrosion resistance, and various properties required in the manufacturing field depending on the constituent components. pump impellers used in seawater and underwater require high corrosion resistance and high rigidity to prevent corrosion and damage, so they are a representative part group to which Stainless materials are applied. Through the introduction of the CMT(Cold Metal Transfer) process, a manufacturing method through WAAM(Wire Arc Additive Manufacturing) technology, which has advantages of lower production cost and excellent fatigue strength compared to the existing casting method, is being proposed. Recently, prior research on the WAAM process has been conducted on various materials, but most of the research results published so far are focused on the DED(Direct Energy Deposition) process, and a good WAAM shape design study using austenitic stainless steel is lacking. in this study, using the CMT process, the relationship between the change in bead shape and process parameters was confirmed in the BoP(Bead on Plate) welding experiment using wire made of austenitic stainless steel STS-308.
        4,000원
        20.
        2023.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.
        4,000원
        1 2 3 4 5