검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 58

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bellows expansion joints enhance the displacement performance of piping systems owing to their unique geometrical features. However, structural uncertainties such as wall thinning in convolutions, a byproduct of the manufacturing process, can impair their structural integrity. This study addresses such issues by conducting a global sensitivity analysis to assess the impact of these uncertainties on the performance of bellows expansion joints under monotonic loading. Global sensitivity analysis, which examines main and nth order interaction effects, is computationally expensive. To mitigate this, we employed a surrogate model-based approach using an artificial neural network. This model demonstrated robust prediction capabilities, as evidenced by metrics such as the coefficient of determination. The sensitivity indices of the main effect for the 2-ply and 3-ply bellows at the sixth convolution were 0.3340 and 0.3233, respectively. The sensitivity index of the sixth convolution was larger than that of other convolutions because the maximum deformation of the bellows expansion joint under monotonic bending load occurs around it. Interestingly, the sensitivity index for the interaction effect was negligible (0.01%) compared to the main effect, suggesting minimal activity between uncertainty factors across convolutions. Notably, bellows expansion joints under repetitive loading exhibit more complex behaviors, with the initial leakage typically occurring at the convolution. Therefore, future studies should focus on the structural uncertainties of bellows expansion joints under cyclic loading and employ a surrogate model for comprehensive global sensitivity analysis.
        4,000원
        2.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the structural performance of the specimen fabricated through 3D printing was evaluated through monotonic loading experiments analysis to apply to 3D printed structures. The compression and flexural experiments were carried out, and the experimental results were compared to the finite element model results. The loading directions of specimens were investigated to consider the capacity of specimens with different curing periods, such as 7 and 28 days. As a result, the strength tended to increase slightly depending on the stacking direction. Also, between the 3D-printed panel composite and the non-reinforced panel, the bending performance depended on the presence or absence of composite reinforcement.
        4,000원
        4.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The plastic deformation behavior of additively manufactured anisotropic structures are analyzed using the finite element method (FEM). Hill’s quadratic anisotropic yield function is used, and a modified return-mapping method based on dual potential is presented. The plane stress biaxial loading condition is considered to investigate the number of iterations required for the convergence of the Newton-Raphson method during plastic deformation analysis. In this study, incompressible plastic deformation is considered, and the associated flow rule is assumed. The modified returnmapping method is implemented using the ABAQUS UMAT subroutine and effective in reducing the number of iterations in the Newton-Raphson method. The anisotropic tensile behavior is computed using the 3-dimensional FEM for two tensile specimens manufactured along orthogonal additive directions.
        4,000원
        5.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent, fiber-reinforced composites have been widely used in many fields because of their excellent performance. In order to manufacture lightweight, high-performance, and inexpensive composites various laminated structures were designed. Six types of hybrid composites were fabricated with glass/basalt/aramid fibers by VARTM process. The effect of the laminated structure on the mechanical properties of composites was investigated through impact energy, tensile and bending strength. Compared to other conditions more higher impact energy was obtained when the aramid fibers were in the center position and more higher bending strength was obtained when the fibers are laminated in the order of increasing bending performance from top to bottom. The laminate structure did not affect tensile strength which mainly depends on the property of fibers.
        4,000원
        7.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 μs higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.
        4,000원
        10.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 적층된 중앙개구부를 갖는 CNTFPC 복합재 판에 대하여 기하학적 비선형 동적 해석을 수행하였다. Hewitt and Malherbe 멀티스케일 모델을 기반으로 MWCNT의 함유 비율과 중앙개구부의 크기 변화에 따른 영향을 분석하였다. 1차전단변형 판이론에 근거하여, Newmark 방법과 Newton-Raphson 반복기법이 비선형 동적해석을 위하여 적용되었다. 본 연구에서 제안한 방법은 기존 문헌으로부터 도출 결과와 비교 검증하였다. 수치해석 예제는 MWCNT의 적절한 함유량 및 적층된 CNTFPC 구조의 구조성능의 향상시킬 수 있는 상호 관계를 상세 규명하였다.
        4,000원
        11.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 탄소나노튜브/화이버/폴리머 복합소재 구조에 대한 재료 물성 및 강성 추정을 다룬다. 수정된 Halpin-Tsai 모델을 적용한 멀티 스케일 해석은 탄소나노튜브의 함유량 비율, CNT 두께-길이 비율, 화이버 부피 함유량, 그리고 화이버 보강각도 변화에 따라서 수행되었다. 본 연구에서 제시한 멀티-스케일 접근방법은 기존 모델을 적용하여 얻은 결과와 비교하여 검증하였다. 매개변수 해석을 통하여 CNT의 적절한 함유량은 적층된 CNTFPC 구조의 구조성능의 향상시킬 수 있는 중요한 특성을 규명하였다.
        4,000원
        12.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Light weighting is one of techniques considered importantly at designing the mechanical structure using the light weight material. This study deals with aluminum-6061 and aluminum foam which stood in the spotlight of light weight material. And the finite element method for safety evaluation has been carried out in order to prevent from the damage and fatigue fracture due to crack appearing at the mechanical structure with this material. The simulation analysis as MT(middle tension) test was carried out by using the core of aluminum foam and the material laminated with sandwich structure of Al-6061. The mechanical structure is linked together with various parts and designed as the material with hole or crack. So, MT test is one of the test methods to evaluate the fatigue fracture characteristic of material and the strength inside material with the center crack by applying the load to the part connected pin. The real material strength is thought to be evaluated through the study result of MT test analysis.
        4,000원
        13.
        2018.04 구독 인증기관·개인회원 무료
        We carried out a dynamic instability assessment of carbon nanotube reinforced composite (CNTRC) and carbon nanotubes/fiber/polymer composite (CNTFPC) skew plates based on the high-order shear deformation plate theory (HSDT). The multiscale interactions between carbon nanotube (CNT) ratios and skew angles on the dynamic instability for various length-thickness ratios are studied using a two-dimensional finite element model developed for this study. The results were verified by those reported in the literature show the interactions between the CNT reinforcement and skew angles in the skew laminate. Numerical examples show the importance of CNT reinforcement when assessing the dynamic instability of CNTRC and CNTFPC skew plates.
        15.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        결합 기반 페리다이나믹 모델은 취성재료의 동적파괴 해석에 많이 이용되고 있으며, 최근의 연구(Bobaru et al., 2012)를 통해 적층유리 구조물의 동적 파괴 패턴 분석에도 활용되었다. 특히 실험(Bless et al., 2010)에서 나타난 적층유리 구조물의 다양한 손상 형태(압축 영역, Floret, Hertz-type 균열 등)를 결합 기반 페리다이나믹 시뮬레이션을 이용하여 구현하였다. 그 러나 실제 적층 구조물은 각 유리판 사이를 탄성이 있는 층간 재료로 결합하는 반면, 기존의 페리다이나믹 수치 시뮬레이션 에서는 층간 재료 결합을 무시하고 각 유리판이 직접 결속되도록 가정하여 층간 재료 효과가 무시되었다. 본 연구에서는 페 리다이나믹 층간 재료 모델링을 통해 실제 적층 구조물에 보다 근접한 페리다이나믹 수치 해석 모델을 제안한다. 일반적으 로 층간 재료는 매우 얇기 때문에 층간 재료를 명시적으로 모델링할 경우 많은 해석시간과 메모리가 소모되어 비효율적이 다. 따라서 본 연구에서는 명시적 모델링을 대신하여 가상 절점을 통해 층간 재료를 모델링한다. 수치 예제를 통해 제안된 층간 재료 모델링의 효율성 및 정확성을 검토한다. 또한 압축 상태의 적층 구조물 해석을 위해 단거리 상호작용력에 기반한 투과 방지 기법을 도입하고 파라미터 테스트를 통해 검증한다.
        4,000원
        16.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CFRP hardened by carbon fiber and resin has the property of high strength and low weight. Specifically, the strong feature against the external vibration environment is shown as CFRP is designed with the structure of multi-axes. So, CFRP in place of metal has been used at the various fields. CFRP specimens for mode Ⅱ are applied with the repetitive fatigue load in this study. These specimens have the fiber layer angles of 30°, 45° and 60°. The material properties of specimens are investigated with the result of fatigue fracture due to this load. As the study result, the smallest and largest reaction forces of 500 N and 540 N are shown at the layer angle of 30° and 60° respectively among these specimens. The separation of adhesive interface at 4000 fatigue cycles is happened earliest in case of the layer angle of 60°. But the separation of adhesive interface at 11000 fatigue cycles is happened latest in case of the layer angle of 45°. Through the result of fatigue property, it is thought that the basis data can be applied to evaluate the safety at CFRP structure applied with fatigue.
        4,000원
        17.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study carried out fiber damage detections of laminated GFRP plate structures using a modified bi-variate Gamma function. The effects of different layup sequences of composites on the fiber damage detection are studied using the finite element commercial package and genetic algorithm. Four unknown parameters are considered to determine the shape of the damage distribution, which is a modified form of the bivariate Gamma density distribution function. The sample studies show the excellence of the proposed method from the standpoints of its computation efficiency as well as its ability to determine the complex shape of an arbitrary stiffness degradation distribution.
        4,000원
        19.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Impedancemetric NOx (NO and NO2) gas sensors were designed with a stacked-layer structure and fabricated using LaCrxCo1-xO3 (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and Li1.3Al0.3Ti1.7(PO4)3 plates as the solid-electrolyte transducer material. The LaCrxCo1-xO3 layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and NOx sensing properties of the LaCrxCo1-xO3 powders were investigated with powder Xray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of NOx at 400 oC (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at 700 oC, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the LaCrxCo1-xO3 powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the LaCrxCo1-xO3 powders with 0 ≤ x < 0.8 had a rhombohedral symmetry. The size of the particles in the LaCrxCo1-xO3 powders increased from 0.1 to 0.5 μm as the Co concentration increased. The sensing performance of the stack-structured LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to NO2 gas. Compared to other impedancemetric sensors, the LaCr0.8Co0.2O3/Li1.3Al0.3Ti1.7(PO4)3 sensor exhibited good reversibility and reliable sensingresponse properties for NOx gases.
        4,000원
        20.
        2015.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is very important to assure the seismic performance of equipment as well as building structures in seismic design of nuclear power plant(NPP). Seismically isolated structures may be reviewed mainly on the horizontal seismic responses. Considering the equipment installed in the NPP, the vertical earthquake responses of the structure also should be reviewed. This study has investigated the vertical seismic demand of seismically isolated structure by lead rubber bearings(LRBs). For the numerical evaluation of seismic demand of the base isolated NPP, the Korean standard nuclear power plant (APR1400) is modeled as 4 different models, which are supported by LRBs to have 4 different horizontal target periods. Two real earthquake records and artificially generated input motions have been used as inputs for earthquake analyses. For the study, the vertical floor response spectra(FRS) were generated at the major points of the structure. As a results, the vertical seismic responses of horizontally isolated structure have largely increased due to flexibility of elastomeric isolator. The vertical stiffness of the bearings are more carefully considered in the seismic design of the base-isolated NPPs which have the various equipment inside.
        4,200원
        1 2 3