검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Steel brace is a popular option among seismic rehabilitation methods for school buildings, but it has a weakness in that the section area must be large enough to prevent buckling, so stiffness and strength are highly increased locally, and foundation reinforcing is required. On the contrary, BRB has strength that the steel core may be negligible since buckling is restrained, so the increase of stiffness and strength is insignificant, and foundation reinforcing may not be required. This study compared the effectiveness of both reinforcing methods for the seismic performance of school buildings by conducting both pushover and nonlinear dynamic analyses. Steel brace and BRB reinforcing may not be satisfied by nonlinear dynamic analysis, even by pushover analysis. This result is due to the school buildings' low lateral resistance and high column shear strength ratio. Suppose BRB can be regarded as a general rehabilitation method. In that case, BRB reinforcing is a favorable and economical option for school buildings with low column shear strength ratio since it can better satisfy performance objectives than steel brace by pushover analysis with a small steel core and no foundation reinforcing.
        4,000원
        2.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the case of a school building, even though it is a regular structure in terms of plan shape, if the masonry infill wall acts as a lateral load resisting element, it can be determined as a torsionally irregular building. As a result, the strength and ductility of the structure are reduced, which may cause additional earthquake damage to the structure. Therefore, in this study, a structure similar to a school building with torsional irregularity was selected as an example structure and the damping performance of the PC-BRB was analyzed by adjusting the eccentricity according to the amount of masonry infilled wall. As a result of nonlinear dynamic analysis after seismic reinforcement, the torsional irregularity of each floor was reduced compared to before reinforcement, and the beams and column members of the collapse level satisfied the performance level due to the reduction of shear force and the reinforcement of stiffness. The energy dissipation of PC-BRB was similar in the REC-10 ~ REC-20 analytical models with an eccentricity of 20% or less. REC-25 with an eccentricity of 25% was the largest, and it is judged that it is effective to combine and apply PC-BRB when it has an eccentricity of 25% or more to control the torsional behavior.
        4,000원
        3.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Steel brace strengthening is the most popular seismic rehabilitation method for school buildings. This is because the design can be conducted by using relatively easy nonlinear pushover analysis and standard modeling in codes. An issue with steel brace strengthening is that the reinforced building should behave elastically to satisfy performance objectives. For this, the size of steel braces should be highly increased, which results in excessive strengthening cost by force concentration on existing members and foundations due to the considerable stiffness and strength of the steel braces. The main reason may be the brittle failure mode of columns, so this study investigated the relationship between the efficiency of steel brace strengthening and column failure modes. The result showed that the efficiency is highly dependent on the shear capacity ratio of columns and structural analysis methods. School buildings reinforced by steel braces do not need to behave elastically when the shear capacity ratio is low, and pushover analysis is used, which means reducing steel material is possible.
        4,000원
        5.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The seismic performance of school buildings has been a matter of common interest socially and academically. The structural system of the school buildings is representative of the domestic low-rise reinforced concrete moment resisting frames, which apply extensively infills in their masonry walls. The masonry infilled walls are divided into full masonry infill in the transverse direction and partial masonry infill in the longitudinal direction. The masonry infilled walls are usually not included in structural analysis during the design process, but affect significantly the seismic performance because they behave with surrounding frames simultaneously during earthquakes. Many researchers have studied the effect of the masonry infilled walls, but several issues have been missed such as the increase of asymmetry by adding the full masonry infill, the size of the mean strength of the full masonry infill, and short column effect by the partial masonry infill. The issues were analytically investigated and the results showed that they should be checked at least by nonlinear pushover analysis in the seismic performance evaluation process. The results also confirm the weakness of the guideline of Korean Educational Development Institute where the seismic performance is basically assessed without structural analysis.
        4,200원
        6.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 학교 건물의 구조적 성능 평가를 통한 내진보강에 대한 연구이다. 본 연구의 목적은 학교 건물의 구조적 성능평가를 통하여 안전성과 사용성을 고려한 구조보강방안을 비교분석하고 합리적 내진 보강안을 제시하여 보다 지진에 안전한 건축물을 유지하는데 도움 이 되고자 한다. 이 목적을 위해 기존의 학교건물을 연구 대상으로 선정하여 내진성능평가를 실시하고 내진 보강안을 제시하였다. 본 연구의 방법은 기존의 철근콘크리트 학교건물을 대상으로 1차 내진 성능평가와 2차 내진 성능평가를 실시하였다. 위와 같은 방법으로 내진성능평가를 하여 그 결과를 분석하고 내진보강방안을 제시(강재댐퍼, 탄소막대보강재)하였다. 제시된 내진 보강방안을 대상 건축물에 적용하여 내진보강 전, 후의 내진성능평가를 통해 종합적인 결과를 도출 하였다.
        4,000원
        7.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was to analyze the architectural characteristics and facade construction of brick masonry auditorium through the Auditorium of Namsan Primary School in 1936. The results of this study were described separately as follows. 1. The auditorium is located away from the school buildings, and its plane is a chamber of rectangle type with an entrance installed on each of the four sides. 2. The external appearance is Renaissance eclectic style, laid red bricks on the lower wall of the window and having a mansard roof. The front and the rear are symmetric with respect to the projected wall at the center. 3. As to the structure of the building, a concrete lower wall was built on the concrete continuous footing, and the brick wall was constructed on the lower wall. The roof is queen post roof truss, and the wall girders were installed on the brick wall. 4. The auditorium has had a number of repairing and maintenance works, which changed the roof and windows outside and the floor, walls, ceiling, etc. inside. 5. The decorative elements of external appearance include lower wall, brick wall, entrances, windows, roof, and dormer windows. The brick wall gives verticality and solidity to the surface of the wall, and the lower wall and wall girders are connected like a cornice of the wall. The surface of the mansard roof and dormer windows express a stable vertically oriented shape.
        4,800원
        8.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 2001년 8월부터 2003년 12월까지 충남대학교 생명과학대학 내 초지시험포장에서 N 시비수준이 Kentucky bluegrss 잔디초지의 건물수량과 품질에 미치는 영향을 구명하고자 수행하였다. N 시비수준은 100, 150 및 200kg/ha의 3처리를 두어 시험하였으며, 얻어진 결과는 다음과 같다. 2년 평균 ha당 건물수량은 N 시비수준이 높아짐에 따라 현저히 증가되어, N 100, 150 및 200kg시비수준에서 각각 6,317, 8
        4,000원
        9.
        2018.10 서비스 종료(열람 제한)
        This paper is a study on the development of a data analysis platform that constitutes a part of the development task of the constant monitoring system that can prepare against the earthquake disaster by using the regular measurement data of the old school buildings. The data analysis platform is composed of database management software that manages the metrology data acquired by using the instrument and data management software that analyzes the metrology data, analysis tools that can analyze the metrology data in various ways, A data analysis platform can be used to assess the safety of the school building and evaluate the seismic safety of the old school building to build a system for earthquake disaster.
        10.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        홍수피해저감효과를 분석하기 위해서는 수리·수문학적 분석을 통한 피해예상지역과 침수심을 분석함과 함께 피해예상지역에 대한 피해액 추정 이 가능해야 한다. 홍수피해액의 추정은 일반적으로 건물의 구조물 및 내용물에 대해서 침수심의 변화에 따라 분석된다. 본 연구에서는 실제 피해 지역의 자료들을 토대로 학교건물에 대한 침수심별 손상함수를 개발하고 적용하였다. 그리고 학교건물에 대한 손상함수의 개발절차, 침수심별 손 상함수의 보완과정을 제시하였고, 그리고 손상함수의 적용결과에 대한 기존 기법과도 비교하여 검증하였다. 본 연구를 통해 손상함수를 개발하는 과정과 개발된 침수심별 손상률 그리고 함수의 적용과정은 향후 피해규모에 따른 홍수피해액 추정을 가능하게 하여 홍수피해저감 대책에 대한 비 용대비 효과분석 수행에 활용될 수 있을 것으로 기대된다.
        11.
        2013.10 서비스 종료(열람 제한)
        This study is about earthquake-proof reinforcement through structural function evaluation of an existing structure. The purpose of this study is to comparatively analyze structure reinforcement measures in consideration of safety and usability through structural function evaluation of existing structures, to offer rational measures for earthquake-proof function and to provide help in maintaining safe structures against earthquake. For this purpose, was selected for this study as an existing school building, earthquake-proof function evaluation was conducted, and measures to reinforce earthquake-proof function was offered. As for the research method, the first and the second earthquake-proof function evaluations were conducted which is an existing reinforced concrete school building. Through the abovementioned methods, earthquake-proof function evaluations were conducted, the results were analyzed and the measure to reinforce earthquake-proof function were offered(reinforcement brace, RC shear wall reinforcement). The offered measure to reinforce earthquake-proof function was applied to the subject structure, and comprehensive results were derived from earthquake-proof function evaluation regarding before and after earthquake-proof function reinforcement.
        12.
        2012.05 서비스 종료(열람 제한)
        To evaluate seismic performance of existing school buildings, This study performed pushover analysis using Midas/Gen Ver.795. The outcome shows that building have insufficient seismic performance and seismic reinforcement is necessary to have enough seismic performance.
        13.
        2009.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 1980년대 표준설계도면에 의해서 건설된 국내 학교건물을 대상으로 일본 내진진단 기준, 비선형 정적 및 동적해석을 수행하여 내진안전성을 평가하였다. 내진진단 결과, 구조내진지표(IS)는 0.2~0.4로 평가 되었으며, 이 결과는 150gal정도의 지진 규모에서 중규모 이상의 지진피해를 받을 가능성이 있다고 판단된다. 비선형 정적해석결과, 장변방향은 부재각 R=1/150rad., 단변방향은 1/100rad.에서 각각 항복하였으며, 비선형 동적해석결과, Hachinohe. EW(200gal)입력지진동에서 대상건물 1층 장변방향 19.85cm 및 단변방향 23.3cm의 최대 지진응답변위를 각각 나타내었다. 지진피해도 판정법을 이용하여 1980년대 국내 학교건물의 내진안전성을 최종적으로 평가한 결과에 의하면 150gal이상의 지진에서 중규모 지진피해가 발생할 가능성이 예측되며, 내진보강 등 실제적인 지진대책이 시급하다고 판단된다.