In this study, copper oxide, manganese oxide and zeolite, clays containing catalysts were prepared to remove hydrogen sulfide emitted in odor of industry. In order to change the heat treatment temperature, a catalyst was prepared 100 degrees from 600 degrees to 1,000 degrees. GC-MS was used to confirm the hydrogen sulfide removal performance. Although the removal performance produced at 600 degrees was maintained by and large, the removal performance decreased as the temperature increased. In particular, the catalyst manufactured at 900 and 1000 degrees had low removal performance. To find out the cause of the decrease in removal performance, the analytical devices XRD, BET, XRF were used. In order to confirm the properties of the catalyst before and after adsorption, SEM-EDS and CS were used. As a result of analyzing the Cu-Mn catalyst, it was confirmed that the material was adsorbed on the surface. To confirm the adsorbent material, SEM-Mapping was employed. And it was verified that the sulfur was adsorbed. Measuring the SEM-EDS 3Point, it was confirmed to be about 25.09%. Another test method CS analyzer (Carbon/Sulfur Detector) was also deployed. As a result of the test, sulfur was confirmed to be about 27.2%. So comparing the two sets of data, it was verified that sulfur was adsorbed on the surface.
In this paper, the adsorption removal characteristic for 10 species of perfluoroalkyl and polyfluoroalkyl substances (PFAS) was investigated using GAC and modified GAC (GAC-Cu). After modification with Cu(II), the amount of copper was to 1.93 and 4.73 mg/g for GAC and GAC-Cu, respectively. The total amount of 10 species of PFAS per specific area was obtained to 0.548 and 0.612 ng/m2 for GAC and GAC-Cu, respectively. A series of batch test confirmed lower efficiency was observed with a smaller number of carbon chain length and the removal efficiency of PFCA (perfluoroalkyl carboxylic acids) was lower than that of PFSA (perfluoroalkyl sulfonic acids) with the same carbon chain length. Regarding the pH effect, the adsorption capacity was decreased with increase of pH due to the increase of electrostatic repulsion. According to pseudo first and second order (PFO and PSO) kinetic models, while the values of equilibrium uptake and time did not show significant difference, a difference in uptake was observed between 24-48h. Furthermore, based on correlation analysis, Log Kow and uptake have a high correlation with molecular weight (M.W.) and initial concentration, respectively. These results show that long-chain PFAS have higher removal efficiency due to their increased hydrophobicity.
Tin bis(monohydrogen orthophosphate) monohydrate 물질의 흡착 성질에 관하여 KCl 수용액을 통하여 조사하였다. 금속이온 농도와 pH를 변화시키면서 어떻게 달라지는지 화학평형에 바탕을 두고 data를 분석하였다. 금속이온들의 흡착 data는 Langmuir 흡착식에 넣어 Langmuir 수치들을 얻는데 사용되었다. Tin phosphate는 산성에서 이온교환 화합물로 작용하였으며, 2가의 전이금속이온에 대해 Cu+2 > Co+2 > Ni+2의 순서로 선택적 흡착성질을 나타내었다. 약한 산성 이온 교환체에서와 같이 금속이온의 교환은 tin phosphate의 선택성을 결정하는데 결정적 역할을 하였다. 모든 경우에서 흡착의 정도는 온도와 농도의 증가와 함께 증가하였다. Lnngmuir 수치들은 흡착과정 동안의 엔트로피, 엔탈피, 자유에너지 변화량같은 열역학적 함수들을 계산하는데 이용되었다.
2 (Langmuir, Freundlich, Elovich, Temkin, and Dubinin-Radushkevich) and 3 (Sips and Redlich-Peterson)-parameter isotherm models were applied to evaluated for the applicability of adsorption of Cu(II) and/or phosphate isotherm using chitosan bead. Non-linear and linear isotherm adsorption were also compared on each parameter with coefficient of determination (R2). Among 2-parameter isotherms, non-linear Langmuir and Freundlich isotherm showed relatively higher R2 and appropriate maximum uptake (qm) than other isotherm equation although linear Dubinin-Radushkevich obtained highest R2. 3-parameter isotherm model demonstrated more reasonable and accuracy results than 2-parmeter isotherm in both non-linear and linear due to the addition of one parameter. The linearization for all of isotherm equation did not increase the applicability of adsorption models when error experiment data was included.
In this study, the flat glass and adsorption pad were modeled using SolidWorks Simulation, to understand the deformation characteristics of the vertical flat glass by the adsorption pressure during vertical transport of LCD. The horizontal and vertical displacements and equivalent stresses of the flat glass were investigated by the structural analysis. From the displacement and stress visualization according to the adsorption pressure, the higher the adsorption pressure, the larger the glass surface protruded. The horizontal deformation of flat glass increased with increasing thickness and the vertical deformation increased with decreasing thickness. In addition, the maximum equivalent stress applied to the flat glass increased significantly as the adsorption pressure increased and the thickness decreased. As a result of the structural analysis, the thinner the thickness of the plate glass, the greater the effect on the adsorption pressure. Especially, the effect of the adsorption pressure was clearly observed at the thickness of 0.5mm.
In this study, the physicochemical characteristics and fluoride adsorption capacity of the bone char pyrolyzed at different temperatures; 200℃, 300℃, 350℃, 400℃, 500℃, 600℃, and 700℃ were investigated. Analytical studies of the synthesized bone char including; SEM-EDS, XRD, BET and FT-IR, showed the presence of hydroxyapatite(HAP), which is the main substance that adsorbs fluoride from aqueous solutions containing high fluoride concentrations. Bone char pyrolyzed from 350∼700℃ specifically revealed that, the lower the temperature, the higher the fluoride adsorption capacity and vice versa. The loss of the fluoride adsorption function of HAP (OH- band in the FTIR analysis) was interpreted as the main reason behind this inverse correlation between temperature and fluoride adsorption. Bone char produced at 350°C hence exhibited a fluoride adsorption capacity of 10.56 mgF/g, resulting in significantly higher adsorption compared to previous studies.
The Odor-causing compounds from grilled meat restaurants are mainly ammonia, aldehydes, and volatile organic compounds (VOCs). Acetaldehyde is known to have the greatest odor contribution. This study examines the application of silica gel for acetaldehyde in gas stream. Heat-pretreated silica gel showed relatively good adsorption performance and at 150oC, its breakthrough capacity reached up to 51 mg/g. By using Thomas' dynamic model, which well estimated the adsorption performance in this study, the effects of inlet concentration and retention time on adsorption capacity were evaluated. The adsorbent saturated with acetaldehyde was regenerated by reducing the pressure, which was controlled by the vacuum pump. The design factors were found to be 10 sec−1 of space velocity, -184 kPa·hr of desorption condition, and 10 to 1 of the ratio of cross sectional area to the height for the fixed-bed. The cyclic operation of adsorption and desorption step in the fixed bed packed with silica gel appeared to have 7.0-8.8 mg/g of acetaldehyde removal capacity and 99% of regeneration.
The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.