검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 159

        101.
        2009.09 KCI 등재 서비스 종료(열람 제한)
        The urban microscale wind field around the air quality monitoring station was investigated in order to check how a building complex influences it. For this study as the high density areas Jwa-dong and Yeonsan-dong monitoring sites in Busan were chosen. As the direction of inflow which is perpendicular to the building of the monitoring station was expected to cause the considerable variation of the wind field, that direction was selected. The model Envi-met was used as the diagnostic numerical model for this study. It is suitable for this investigation because Envi-met has the microscale resolution. After simulating it, on the leeward side around a building complex the decrease of flow velocity and some of vortexes or circulation area were discovered. In addition, on the edge of the top at the building and at the back of the building the upward flow was developed. If the sampling hole of monitoring site were located in this upward flow, it would be under the influence of upward flow from the near street.
        102.
        2009.05 KCI 등재 서비스 종료(열람 제한)
        We measured ambient concentrations of hazardous air pollutants such as volatile organic compounds (VOCs) and aldehydes in residential areas nearby small and medium scale shipbuilding companies. The VOC concentrations were higher during the normal operation periods than vacation at which almost all operations were shutdown. Concentrations of VOCs was higher, as the sampling site was nearer from shipbuilding companies. The major components of VOCs were m,p-xylene, ethylbenzene, o-xylene, toluene, and 1,3,5-trimethylbenzene which had been found as major VOC compounds emitted from painting processes of shipbuilding in the previous studies. The major components of aldehydes analyzed were benzaldehyde, acrolein, formaldehyde, and acetaldehyde. The concentration of aldehydes was highest at the furthest sampling point from shipbuilding companies because the formation of aldehyde compounds could be occurred by the secondary chemical reactions of VOCs. The results of this study shows a proper counterplan need to be established for the reduction of hazardous air pollutants emitted from small and medium scale shipping companies.
        108.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        The air pollutant emission is mainly caused by line sources in urban area. For example, the annually totaled air pollutant emission is known to consist of about 80% of line sources in Daegu. Hence, the appropriate assessment on the air pollutants of line sources is very important for the atmospheric environmental management in urban area. In this study, we made a comparative study to evaluate suitable dispersion model for estimating the air pollution from line sources. Two air pollution dispersion models, ISCST3 and CALINE4 were the subject of this study. The results were as follows; In the assessment of air pollution model, ISCST3 was found to have 4 times higher concentration than CALINE4. In addition, actual data obtained by measurement and estimated values by CALINE4 were generally identical. The air pollution assessment based on ISC3 model produced significantly lower values than actual data. The air pollution levels estimated by ISCST3 were very low in comparison with the observational values.
        109.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        Currently, portable equipment for recycling of waste asphalt concrete (ASCON) has been used. However, any air pollution control devices are not attached in the simple portable one. Thus, a lot of air pollutants have been produced from recycling processes of waste ASCON which resulted from aging of paved roads or repavement of roads. This study deals with a preliminary result of concentration analysis of air pollutants obtained from a pilot and a real recycling processes of waste ASCON using simple portable recycling equipment. Air pollutants were taken from 4 steps of the pilot recycling process including an initial heating by liquid petroleum gas (LPG), intermediate heating and melting (H&M) process, final H&M process, and pavement processes using recycled ASCON at the recycling site. Also, air pollutants were taken front 4 steps of the real recycling processes including an initial H&M, final H&M and mixing, loading of recycled ASCON to dump trucks, and at the recycling site after leaving the loaded dump trucks for real pavement sites. The air pollutants measured in this study include volatile organic compounds (VOCs), aldehydes, particulate matter (PM: PM1, PM2.5, PM7, PM10, TSP (total suspended particulate)). The identified concentrations of VOCs increased with increasing time or degree for H&M of waste ASCON. In particular, very high concentrations of the VOCs at the status of complete melting, which is exposed to the air, of the waste ASCON just before paving tv the recycled ASCON at the recycling site. Also, considerable amount of VOCs were identified from the recycling equipment after the dump trucks leaded by recycled ASCON leaved the recycling site for the pavement sites. The relative level of formaldehyde exceeded 80% of the aldehydes Identified in the recycling processes. This is because the waste ASCON is exposed to direct flame of LPG during H&M processes. The PM concentrations measured in the winter recycling processes, such as the loading and rotation processes of waste ASCON into/in the recycling equipment for H&M, were much higher than those in the summer ones. In particular, the concentrations of coarse particles such as PM7 and PM10 during the winter recycling were very high as compared those during the summer one.
        113.
        2006.08 KCI 등재 서비스 종료(열람 제한)
        Present study was designed to characterize the concentrations of major roadside air pollutants in Daegu and to compare with those of Seoul and Busan. Evaluated were the exceedance frequence of mean concentrations of target compounds(CO, NO2, O3, PM10, SO2) and the relationship for time variation. Two air pollution monitoring stations(one roadside station and one residential station) in Daegu were selected for this study. In addition, one roadside monitoring station from each of Seoul and Busan was chosen for the comparison of Daegu monitoring stations. The data analyzed in the current study were collected from 1998 to 2000 by Daegu Regional Environmental Management Office. The roadside concentrations of NO2 and PM10 and the exceedance frequency of ambient air standard levels in Daegu were higher than those of Seoul and Busan. Except O3, the roadside concentrations of all target compounds showed following three distinguished patterns; first, possibly due to increased traffic density, the concentrations increased from 0500 to 0900(LST), second, the concentrations decreased from 0900 to 1700(LST) possibly due to the increased wind velocity and decreased traffic density, and finally, increased traffic density, the concentrations increased again from 1700 to 2100(LST). An implication was that major air pollution sources shifted from residential area to road-area during rush hours.
        115.
        2006.04 KCI 등재 서비스 종료(열람 제한)
        Release rate is one of the important items for the environmental impact assessment caused by radioactive materials in case of an accidental release from the nuclear facilities. In this study, the uncertainty of the estimated release rate is evaluated using Monte Carlo method. Gaussian plume model and linear programming are used for estimating the release rate of a source material. Tracer experiment is performed at the Yeoung-Kwang nuclear site to understand the dispersion characteristics. The optimized release rate was 1.56 times rather than the released source as a result of the linear programming to minimize the sum of square errors between the observed concentrations of the experiment and the calculated ones using Gaussian plume model. In the mean time, 95% confidence interval of the estimated release rate was from 1.41 to 2.53 times compared with the released rate as a result of the Monte Carlo simulation considering input variations of the Gaussian plume model. We confirm that this kind of the uncertainty evaluation for the source rate can support decision making appropriately in case of the radiological emergencies.
        117.
        2005.08 KCI 등재 서비스 종료(열람 제한)
        Scanning electron microscopy / energy dispersive X-ray analyzer(SEM/EDX) has played an important role for evaluation the source of atmospheric particle because it is a powerful tool for characterizing individual particles. The SEM/EDX system provides various physical parameters like optical diameter, as well as chemical information for a particle-by-particle basis. The purpose of the study was to classify individual particle emitted from the point sources based on clustering analysis and physico-chemical analysis by SEM/EDX. The total of 490 individual particle were analyzed at 8 point sources including coal-fired power plant, incinerator, B-C oil boiler, and metal manufacturing industry. The main components were Si and Al in the coal-fired power plant, Cl and Na in the domestic waste Incinerator, S in the B-C oil boiler and S and Fe in the metal manufactory industry, respectively.
        118.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        Enormous apartment complexes in urban areas, temporary inversion state and heat island effect occur due to the strong sunshine and weak wind speeds which hinders the dispersion of air pollutants that are emitted from neighboring areas of apartment complexes. In this study, analysis were conducted by using the Fluent code based on the CFD(Computation Fluid Dynamics), including building layout, material, building height from the ground surface, the heat, analysis of flow field in the apartment complex. It was estimated that the temporal radiation inversion phenomenon during the daytime, which was caused by the weak wind speed and higher temperatures in the upper level, contributed to the stagnation of the air pollutants in the lower layer of the apartment complex.
        119.
        2005.06 KCI 등재 서비스 종료(열람 제한)
        This study presents the characteristics of nocturnal inversion layer and their effect on the concentration variations of surface air pollutants using tethersonde and automatic weather station (AWS, 2 layer tower) system in Ulsan during 2003. The method for the distinction of inversion intensity was decided based on the sum of nocturnal temperature gradient. As the results, there was a close correlation (correlation coefficient of 0.76) between the maximum inversion height obtained from tethersonde and the sum of nocturnal temperature gradient. The air pollutant concentration was also directly proportional to the inversion intensity. When the inversion intensity was strong in the nighttime, ozone (O3) concentration was lower, while nitrogen dioxide (NO2) concentration was higher. The carbon monoxide (CO) concentration was gradually higher according to the nocturnal inversion intensity, whereas sulfur dioxide (SO2) concentration was relatively constant. In addition, we found that there was no correlation between the inversion intensity and TSP concentration.
        120.
        2005.02 KCI 등재 서비스 종료(열람 제한)
        The importance of atmospheric conditions for the assessment of an air pollution situation has been demonstrated by their influence on the various compartments of an air pollution system, comprising all stages from emission to effects. Especially, air pollutants dispersion phenomenon are very sensitive according to wind data. But the discussions of how to apply representative meteorological data in air pollution dispersion model are not frequent in Korean environmental assessment processes. In this study, we investigated the difference of air pollutants dispersion phenomenon using U.S EPA ISCLT3 model according to applying the different meteorological data observed at two points for Seongseo industrial complex of Daegu. Two points are the spot site of Seongseo industrial complex and Daegu meteorological observatory. The winds speed of the spot site were smaller than those of Daegu meteorological observatory. In the winter season, the differences came to about 64% for the period(1 February 2001~31 January 2002). Wind directions were also fairly different at two points. The air pollutants dispersion phenomenon estimated from our numerical experiments were also fairly different owing to the meteorological conditions at two points.
        6 7 8