To reduce the air pollution from maritime activities, which is proven to have severe impacts on the worldwide environment and human health, many international regulations have been established. Therefore, an effective political strategy and a complete inventory of emissions are needed to control atmospheric ship pollution and comply with these international standards. The purpose of this study is to calculate the amount of emission in three operating modes (cruising, maneuvering, and hoteling) for some main pollutants emitted from container ships and trucks operating in Daesan port in Korea based on bottom-up methodology. The results showed that the volume of air pollution of about 6,500 tons from container ships and 1,455 tons from container trucks were emitted in Daesan port area. Also, a total of 4 billion won (about 3.6 billion won from container ships, and about 400 million won from container trucks) was estimated.
도로협곡에서의 수목식재에 따른 보도 내 교통유발 대기오염도 변화를 살펴보기 위해 오픈소스 전산유체역학 코드 FDS(Fire Dynamics Simulator)를 사용하여 수목 투과지수, 식재 위치 및 유형에 따른 영향을 조사하였다. 광범위한 시뮬레이션을 통해 1) 관목층 만으로만 구성된 사례, 2) 관목층과 아교목층으로 구성된 사례 및 3) 관목층과 교목층으로 구성된 사례를 포함하는 400개의 시나리오 사례 중 399개 사례에 대해 유효한 데이터를 생성하였다. 분석결과, 보도 위에서 관찰되는 평균화된 정상상태 대기오염 농도는 식재유 형과는 무관하게 수목식재 후 약 10% 이상 감소하는 것으로 나타났다. 가장 큰 대기오염 감소효과는 관목층만으로 구성된 사례에서 관찰되었는데 대략 45%까지 감소하는 것으로 나타났다. 이러한 감소효과는 차선에서 인도로 대기오염물질을 직접 수송하는 선회류가 관목층에 의해 유리한 방향으로 변형되는 물리적 과정에 기초한다.
PURPOSES : In this study, we analyzed the characteristics of nitrogen oxide and fine particulate matter concentration for boarding positions at the bus stop of an exclusive bus lane, using a correlation analysis and a generalized linear model.
METHODS : To analyze the air pollution characteristics for boarding positions at the bus stop, data on nitrogen oxide, fine particulate matter concentration, relative humidity, temperature, wind speed, solar radiation, and bus traffic volume were acquired. Using the collected data, a correlation analysis for nitrogen oxide and fine particulate matter was carried out for each boarding position. Additionally, the prediction models for each pollutant were estimated using a generalized linear model, to analyze their characteristics.
RESULTS : Correlation analysis revealed that relative humidity and bus volume were positively correlated with both nitrogen oxide and fine particulate matter concentrations in all boarding positions, whereas temperature, wind speed, and solar radiation were negatively correlated. Based on the estimated models from the generalized linear model, the nitrogen oxide concentration at the first measurement point was found to be affected by relative humidity, temperature, and bus volume, whereas at the second measurement point, it was found to be affected by relative humidity, temperature, and solar radiation. Additionally, all factors were significant for fine particulate matter concentration at both boarding positions.
CONCLUSIONS : The analytical results indicated that the characteristics of nitrogen oxide and fine particulate matter concentration at the bus stop of an exclusive bus lane varied significantly depending on the boarding positions. Particularly, it was found that the correlation between solar radiation, and nitrogen oxide and fine particulate matter was different because of the conversion of nitrogen oxide to fine particulate matter.
In this paper, a survey on students’ perceptions of air pollution, particulate matter (PM) and indoor air quality (IAQ) in school classrooms was analyzed. A total of 174 students participated in the survey, where 127 and 47 participants were elementary school students and middle school students, respectively. The elementary school was located in a rural area of Korea, whereas the middle school was located in an urban area. The questionnaire of the survey was mainly composed of three parts: (1) students’ perceptions of air pollution, (2) students’ perceptions of IAQ in the classroom, and (3) students’ perceptions of how to improve IAQ in the classroom. Based on our study, the responses of the students for the given questionnaire showed an opposite tendency. The students in the rural area tended to have positive perceptions regarding IAQ in the classroom as well as air pollution, whereas the students in the urban area revealed negative perceptions for the same items. Our survey results can be used by school officials in order to maintain and improve IAQ in school classrooms based on the perceptions of the students.
Due to severe environmental pollution from ships, IMO(International Maritime Organization) is imposing strict controls on pollutant emission in ECA(Emission Control Area). There have been active studies to find fuel that could replace existing fossil fuel and especially in recent times, diverse studies on recycling of coffee ground are in progress. The annual domestic consumption of coffee was 150,000 tons according to the data of 2017 year and 99% of them are coffee ground to be scrapped. Therefore, in this study, coffee ground was mixed with diesel oil to develop alternative fuel. The analysis result showed that when coffee ground and diesel oil were mixed at a rate of 30%, 20% and 10%, the diameter of coffee ground droplet was 49.1μm, 45.9μm and 17.5μm respectively.
The urban expressway is widely used to avoid traffic jams in highly-populated urban areas. However, vehicle exhaust can be easily transported to the neighboring area including residential buildings. In this study, we investigated the transport and penetration of vehicle exhaust into the nearby high-story residential building. Black carbon (BC) and lung deposited surface area (LDSA) concentrations were monitored every 1 min using an aethalometer (AE51, Magee) and a nanoparticle aerosol monitor (AeroTrak 9000, TSI), respectively. For comparison, the measurement was carried out in both the living room and balcony of the apartment from January 18 to January 25, 2016. The CO2 concentration indicated the presence of residents in the living room and transport of vehicle exhaust from the roadway in the balcony. Its diurnal variation showed a significant difference between weekdays and the weekend, implying the different time activity of residents and traffic volume. BC and LDSA concentrations were 1.4±1.5 μg/m3 and 53.9±45.0 μm2/cm3 indoors, and 1.9±1.0 μg/m3, 76.2±34.5 μm2/cm3 outdoors, respectively. The indoor to outdoor concentration ratios range from 0.6 to 0.8, indicating the significant influence of outdoor vehicle exhaust. The highest concentrations of BC and LDSA were observed in the morning rush hours, except for those indoors during the weekend. In particular, the outdoor effect is significant during the morning rush hours. Indoor air quality management is urgently needed for residents living near the urban expressway.
도시교통과 환경문제가 날로 악화됨에 따라 중국 대도시를 중심으로 자동차 관련 제한정 책이 실시되고 있다. 자동차 구매와 운행에 대한 제한을 주요 내용으로 하는 정책으로 현재 베이징(北京)을 비롯한 전국 대도시를 중심으로 실시되고 있다. 그밖에 아직 실시하고 있지 않은 다수 도시들이 자동차구매제한정책의 실시를 계획하거나 고려하고 있다. 대기오염의 주범으로 꼽히는 아황산가스와 매연의 배출량 증가는 중국의 자동차 보급 확산과 관련이 깊다. 중국 대도시의 자동차구매제한정책의 실시 배경과 추세, 실효성 등에 대한 연구는 당면한 환경오염문제뿐만 아니라 자동차산업시장 관련 기업에 대해서도 상당히 중요한 의의를 가질 것으로 판단된다. 본 연구의 목표는 갈수록 심각해지고 있는 중국의 대기오염 상황에 맞춰 중국 정부가 해결 방안의 하나로 내놓은 자동차구매제한 정책의 실효성을 분석하는데 있다. 이를 위해 최근 몇 년간 중국에서 발생한 대기오염의 피해 상황을 검토하고 자동차구매제한 정책 관련 중국 정부의 대응 방안에 관해 살펴보고자 한다.
Odor dispersion from road emissions were investigated using CFD (Computational Fluid Dynamics). The Shear Stress Transport k-ω model in FLUENT CFD code was used to simulate odor dispersion around the road. The two road configurations used in the study were at-grade and fill road. Experimental data from the wind tunnel obtained in a previous study was used to validate the numerical result of the road dispersion. Five validation metrics are used to obtain an overall and quantitative evaluation of the performance of Shear Stress Transport k-ω models: the fractional bias (FB), the geometric mean bias (MG), the normalized mean square error (NMSE), the geometric variance (VG), and the fraction of predictions within a factor of two of observations (FAC2). The results of the vertical concentration profile for neutral atmospheric show reasonable performance for all five metrics. Six atmospheric stability conditions were used to evaluate the stability effect of road emission dispersion. It was found that the stability category D case of at-grade decreased the non-dimensional surface odor concentration smaller 0.78~0.93 times than those of stability category A case, and that F case decreased 0.39~0.56 times smaller than those of stability category A case. It was also found that stability category D case of filled road decreased 0.84~0.92 times the non-dimensional surface odor concentration of category A case and stability category F case decreased 0.45~0.58 times compared with stability category A case.
Air pollution dispersion from rooftop emissions around hexahedron buildings was investigated using computational fluid dynamics (referred to hereafter as CFD). The Shear Stress Transport (referred to hereafter as SST) k-ω model in FLUENT CFD code was used to simulate the flow and pollution dispersion around the hexahedron buildings. The two buildings used in the study had the dimensions of H: L: W (where H = height, L = length, and W = width) with the ratios of 1:1:1 and 1:1:2. Experimental data from the wind tunnel obtained by a previous study was used to validate the numerical result of the hexahedron building. Five validation metrics are used to obtain an overall and quantitative evaluation of the performance of SST k-ω models: the fractional bias (FB), the geometric mean bias (MG), the normalized mean square errors (NMSE), the geometric variance (VG), and the factor of 2 of the observations (FAC2). The results of vertical concentration profile and longitudinal surface concentration of the 1:1:2 building illustrate the reasonable performance for all five metrics. However, the lateral concentration profile at X = 3H (where X is the distance from the source) shows poor performance for all of the metrics with the exception of NMSE, and the lateral concentration profile at X = 10H shows poor performance for FB and MG.
Every year, China’s air quality is reaching hazardous level. Accordingly, China is adapting stringent environmental regulations under the new 13th Five Year Plan. The noticeable developments in the new air pollution regulations include: (1) mandatory air pollutant disclosure requirement; (2) shift towards non-compliance liability rule; and (3) increased penalty for transgression against wider range of industries. This paper first explains that these developments will induce American investments in China to carefully draft investment contracts, particularly confidentiality and limited liability clauses to minimize the risk of harsher penalties. The paper then argues that China’s stringent pollution regulations will not negatively affect American investment trend in China, mainly because most American investments already adhere to the OECD standard, and disclosing environmental information will enhance entity’s good reputation and attract investors.
본 연구는 강원도 소재 동해항만에서 발생하는 미세먼지 관리를 위한 환경비용편익을 산출하는 것이다. 항구 인근에 부유하는 미세먼지의 농도는 매우 높은 편이며, 지점에 따라 국가 기준인 100μg/m3 이상으로 관측되는 곳도 있다. 시험대상 항구는 주로 석회석과 석탄을 취급함으로써 미세입자상 물질이 하역시 다량 발생한다. 연구결과 PM10을 기준으로 년간 12톤의 미세먼지가 하역작업 시 발생하는 것으로 밝혀졌다. 덧붙여서 원료물질을 비롯한 다양한 화물을 운송하는 대형차량 및 중장비는 디젤 검댕이를 발생하고, 도로먼지의 비산을 유발한다. 지방정부는 해마다 20억원 이상의 비용을 투자하여 대기중 미세먼지를 제거하고 있다. 편익대비 비용을 산출한 결과 그 효과는 최소 240%에서 최대 720%까지 얻을 수 있는 것으로 나타났다.
The dispersion of air pollution in complex situations such as the cases of the filled road is a significant problem for the public safety and living quality. Application of computational fluid dynamics (CFD) helps to build the model calculation in order to estimate the dispersion of air pollutants. In order to assess its accuracy, this study used the Realizable k-ε model, the RNG k-ε model, and the Shear-Stress Transport k-ω turbulence model in FLUENT CFD code. The results were compared with the wind tunnel experiments. The Realizable k-ε turbulence model provided the best prediction for the surface concentration and concentration profiles of selected downwind positions of the filled road. It was found that a noise barrier, which positioned on the filled road, increases the vertical air pollution impact distance larger 1.75~1.92 times and decrease the horizontal impact distance lower 0.46~0.54 times than those of no barrier case. It was also found that two or three noise barriers increase 1.63~1.79 times the vertical air pollution impact distance. It contributes the decrease of horizontal air pollution impact distance 0.49~0.63 times compare with no barrier case.
Noise barriers along the road do not only block the traffic noise but also prevent traversing the car exhausts. These barriers may affect air pollution dispersion, leading to increase vertical mixing due to the upwind deflection of air flow caused by the noise barriers. In this study we investigated the air pollution dispersion around multi-noise barriers using commercial software FLUENT. Investigated cases were 8 cases which had from zero to three noise barriers and two emission sources. Simulated results show noise barriers increase the vertical air pollution impact distance larger 1.7~2.1 times than that of no barrier case. It was also found that noise barriers decrease the horizontal air pollution impact distance lower 0.6~0.8 times than that of no barrier case.
To research indoor air pollution in the training rooms of technical high school, the temperature, air current, humidity, CO2, CO, O3 were measured by Indoor Climate System(ICS 500, Casella, UK) at each classroom, scientific laboratory, electricity training room, electronic equipment training room and welding training room. The change of air pollution concentration and its correlation were additionally compared and analyzed. At closed small space such as classroom, scientific laboratory, electronic equipment training room and electricity training room, the CO2 concentration was obtained to the 2,030ppm(max.), which is higher than notified and recommended standard value(1,000ppm) by Ministry of Health and Welfare and Ministry of Environment, Korea. At welding training room where is larger and more ventilated than general classroom, CO concentration was measured to the 3.6ppm, which is higher than average 1ppm measured at other training rooms. The concentration of O3 is not yet regulated from the standards of underground air quality, but at welding training room it was measured as 0.11ppm(max.) that is higher than 0.01ppm measured at other training rooms. The higher value of temperature, air current, radiant temperature and CO2 concentration was shown at scientific laboratory, electricity training room and electronic equipment training room where are closed and same with the scale of classroom. And the higher concentration of CO2, CO and O3 was shown at welding training room which was opened larger classroom. The indoor air pollution by CO2, CO and O3 may directly affect on the training room where many students work at a small space, and they should be controlled appropriately. Each experimental formulas were made for the estimation of CO2, CO and O3 concentration depending on some kinds of variables at each training room. It is found that indirect ventilation system with a filter will be needed for regular and constant ventilation and the ventilation system should be applied to protect and make clean and comfortable environment of training rooms at technical high school.
Absenteeism is an important index that is related not only to health but also to direct daily activities. It may lead to a student's poor educational performance and overall reduction in educational quality. Particularly, diseases causing school absenteeism are important for environmental health of children's study. However only a few studies regarding the effects of air pollution on school absenteeism due to respiratory disease have been reported. This study was performed to examine the effect of air pollution on absenteeism by respiratory disease, using school attendance reports from March 2002 to December 2004. In this study, we counted absenteeism numbers using school absenteeism data from the first to sixth grade and classified absenteeism into illness-related, non-illness-related and respiratory disease-related illness absences. To this end, we used air pollution data (CO, NO2, PM10, and SO2) and temperature and relative humidity data collected during the study period. Daily counts of absenteeism were analyzed by Generalized Additive Model after the adjustment of several factors such as seasonal variation, day of the week, and meteorological parameter confounders in a nonparametric approach. For each air pollutant, we analyzed illness-related absences, non-illness-related absences, and respiratory- illness related absences. Then, we considered both influenza and non-influenza related absenteeism type. In illness-related absences analysis, absenteeism risks increased to 1.05(1.02-1.08) for CO and 1.06 (1.02-1.10) for NO2 by each interquartile range change with adjustment for influenza. The risks for respiratory-related absences of CO and NO2 increased to 1.05(1.02-1.08) and 1.04(1.01-1.08), respectively by each interquartile range change with adjustment for influenza. However, in the analysis of non-illness-related absences, there were no significant risks for the effect of all air pollution. This result shows that air pollution can affect respiratory-related absences and provides a basis for developing environmental health policy against air pollution.
This study was performed to investigate airborne volatile organic compounds(VOCs), formaldehyde, respiratory particulate for concentration in primary schools. The concentrations of major indoor air pollutants(VOCs , benzene, toluene, ethylbenzene, xylene, styrene, formaldehyde, PM-10) were observed from November to December 2006. Sampling was undertaken at 81 primary schools. The sampling sites of air pollutants are classroom and hallway. VOCs with distribution of most of general environmental contamination material will be able to confirm that it shows the log-normal distribution which is similar exposure distribution. The exposure quality of VOCs and the place pollution level was indoor> hallway>outdoor, which whole is located in the metropolis and the industrial areas is higher than farm village area. It tried to observe the I/O ratio, it appeared highly from the interior of the material of most. The mean concentrations of formaldehyde, respiratory particulate were 22.07㎍/㎥, 88.06㎍/㎥ respectively. Indoor and outdoor ratios(I/O) of formaldehyde and respiratory particulate were 3.6 and 1.4, respectively. The concentration of respiratory particulate is 27.2% higher than guideline for school hygiene(100㎍/㎥). From the comparison in the construction year, the highest concentration of formaldehyde is showed under one year. However, as time passed by the concentrations of formaldehyde become lower.