Lactobacillus johnsonii JERA01-supplemented feed additive (Lj-A) was produced by fermenting dried porcine blood with Lactobacillus johnsonii (Lj). Lj-A has highly digestible nutrients, bioactive peptides, and probiotic effects. To assess the immunomodulatory potential of Lj-A, it was tested on splenocytes of C57BL/6 mouse. Lj-A was treated on splenocytes in a range of concentration, 0-100 μg/ml. The metabolic activity of splenocytes was enhanced by Lj-A, as shown in MTT assay. Also, some splenocyte clusters were observed under a bright-field microscope on the wells treated with Lj-A. The splenocyte clusters indicated that the cells were activated and proliferating in response to Lj-A. These findings suggest that Lj-A stimulates splenocytes to promote immune cell activation, as evidenced by increased tumor necrosis factor-alpha and interleukin-12 production, thereby enhancing immunological defense functions. In vitro treatment of splenocytes with Lj-A increased the proportions of T cells, B cells, and CD25+ cells. In vivo, immune cell activity was evaluated in C57BL/6 mice orally administered with Lj-A at a dose of 100 mg/day. The proportion of dendritic cells in peritoneal cells was increased along with elevated CD54+ expression. Additionally, the proportions of B cells, CD25+ cells in Peyer’s patch cells increased as well. These results suggest that Lj-A may contribute to the enhancement of immune function and the maintenance of long-term health in animals.
The development of high-performance metal filters is essential for maintaining ultra-clean environments in semiconductor manufacturing. In this study, cross-sealed honeycomb filters were fabricated using STS316L powder via material extrusion additive manufacturing (MEAM) for semiconductor gas filtration. The effects of filter geometry (4 or 9 channels) and sintering temperature (850°C, 950°C, or 1,050°C) on performance were examined. First, 4-channel and 9-channel filters sintered at the same temperature (950°C) exhibited similar porosities of 50.08% and 50.57%, but the 9-channel filter showed a higher pressure-drop (0.26 bar) and better filtration-efficiency (3.55 LRV) than the 4-channel filter (0.19 bar and 3.25 LRV, respectively). Second, for filters with the same geometry (4-channel) increasing the sintering temperature reduced porosity from 64.52% to 40.33%, while the pressure-drop increased from 0.13 bar to 0.22 bar and filtration-efficiency improved from 2.53 LRV to 3.51 LRV. These findings demonstrate that filter geometry and sintering temperature are key factors governing the trade-off between air permeability, pressure-drop, and filtration efficiency. This work provides insights and data for optimizing MEAM-based high-performance metal powder filter design.
This study introduces a cost-effective electrochemical exfoliation technique for producing highly crystalline graphene from graphite. By optimizing key exfoliation parameters, including voltage, electrolyte concentration, and temperature, the efficiency of the exfoliation process and the quality of the resulting graphene were significantly improved. To further enhance crystallinity, minimize defect sites, and achieve superior material properties, the as-prepared electrochemically exfoliated graphene (AeEG) underwent post-heat treatment at temperatures ranging from 1500 to 2950 °C. When employed as a conductive additive, eEGs heat-treated at 1800 °C or higher significantly improved both cycle stability and rate performance in LIB coin cells, while maintaining a discharge capacity approximately 10–12 mAh/g higher than that of the control, which utilized Super P. The enhanced performance is attributed to the formation of an efficient conductive network and superior electron transport properties, driven by the high crystallinity and large aspect ratios of the heat-treated eEGs. These findings highlight the potential of eEG as a highly effective conductive additive for advanced battery industries, offering significant improvements in energy storage performance, specific capacity, and rate characteristics.
This study examines the effects of additive manufacturing (AM) orientations and support structures on the compressive strength of lattice structures. Test specimens were fabricated using a selective laser melting (SLM) process with AlSi10Mg material under three conditions: horizontally aligned (0°), tilted at 45°, and supported. Compression tests were conducted using a universal testing machine (UTM) and Digital Image Correlation (DIC) to evaluate mechanical behavior. The results showed that the supported horizontal specimens exhibited the highest compressive strength, while the 45° tilted specimens had the lowest due to interlayer separation and localized failures. The findings highlight the significance of build orientation and support design in optimizing AM lattice structures. Future research should explore various lattice configurations, material selections, and post-processing effects to further enhance structural performance.
The present study introduces a machine learning approach for designing new aluminum alloys tailored for directed energy deposition additive manufacturing, achieving an optimal balance between hardness and conductivity. Utilizing a comprehensive database of powder compositions, process parameters, and material properties, predictive models—including an artificial neural network and a gradient boosting regression model, were developed. Additionally, a variational autoencoder was employed to model input data distributions and generate novel process data for aluminum-based powders. The similarity between the generated data and the experimental data was evaluated using K-nearest neighbor classification and t-distributed stochastic neighbor embedding, with accuracy and the F1-score as metrics. The results demonstrated a close alignment, with nearly 90% accuracy, in numerical metrics and data distribution patterns. This work highlights the potential of machine learning to extend beyond multi-property prediction, enabling the generation of innovative process data for material design.
This study aimed to investigate the effects of various washing pre-treatments of native Codium fragile as a feed additive on in vitro ruminal fermentation and CH4 production in ruminants. Seaweed was included at 0.5% dry matter (DM) based on the experimental feed (forage : concentrate = 3:7). Treatment groups were classified as follows: experimental feed (C), no washing (T1), washing at 0°C (T2), washing at 22°C (T3) and washing at 70°C (T4) each immersed for 6 minutes in distilled water. The pH consistently fell within the ruminal stability range. In vitro dry matter digestibility was significantly highest in T2, T3, T4 and C, T4 was the lowest at 48 h (p<0.05). NH3-N concentration was significantly highest in T4 at 48 h (p<0.05). Total gas production at 48 h was 19% lower in T4 compared to C (p<0.01). CH4 production (mL/g DM) at 48 h was lower in all treatment groups compared to C, with T3 showing a 31% reduction (p<0.01). Similarly, CH4 production (mL/g dry matter degradability, DMD) at 48 h was 39% lower for T3 compared to C (p<0.01). At 24 h, total VFA was significantly highest in T1 and T4 (p<0.05). The proportions of acetate was significantly highest in C and T3 was the lowest at 48 h (p<0.01). The proportions of propionate was significantly highest in T3 and C was the lowest at 48 h (p<0.01). The acetate to propionate ratio was singnificantly highest in C at 48 h (p<0.01). The proportions of butyrate at 24 h was lower for T3 compared to C (p<0.05). Therefore, this study confirms that Codium fragile can reduce CH4 production when used as a feed additive for ruminants and this effect is not significantly influenced by the washing pre-treatment. However, if washing process is necessary, washing at 22°C is the most appropriate method to remove foreign objects.
Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.
기체 분리막의 상업적 발전은 CO2 분리 효율을 향상시키는 데 중요한 역할을 한다. 고분자량 PEO (high-Mw PEO)는 높은 CO2 용해도, 가격 경쟁성 및 견고한 기계적 특성을 가져 분리막 제조용 고분자로 유력하지만 그 특유의 결정성 으로 인해 기체 분리막에 응용이 어렵다. 본 연구에서는 결정성 감소를 위해 다양한 고분자 첨가제를 고분자량 PEO에 혼합 하는 방법을 제시하였다. 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG), 폴리아크릴산(PAA) 및 폴리비닐피롤리돈(PVP) 과 같은 상업적으로 이용 가능하고 섞임성이 좋은 수용성 고분자를 첨가제로 사용하여 PEO 결정성을 감소시킴으로써 가스 분리 성능을 향상시키고자 하였다. PEG 및 PPG의 경우 PEO의 결정 구조를 억제하지 못하고 분리막의 결함을 초래하였으나, PAA 및 PVP는 PEO의 결정 구조를 바꿔 결함이 없는 분리막을 제조하는 데 성공하였다. 고분자량 PEO 혼합막의 결정 구조 변화와 기체 분리 성능의 상관관계를 조사하여 본 연구의 결과와 이전에 기록된 결과를 바탕으로 고분자량 PEO에 대한 첨가 제 고분자의 설계 및 선택에 대한 통찰력을 제공하며, 이를 통해 비용 효율적이고 상업적으로 실용적인 CO2 분리막을 제조하 고자 하였다.
The global pet market is continuously growing as the number of single-person households increases along with the preponderance of the nuclear family, so pet-related industries are steadily growing. In addition, the market related to the health of companion animals is also increasing significantly. Regarding the health of companion animals, it is reported that the incidence of adult diseases, like humans, is growing mainly due to activities in indoor environments and the lack of exercise due to the lack of time for companion animals. This paper studies the antioxidant properties of Jerusalem Artichoke extract, which can be used as a raw material for functional foods related to adult diseases in companion animals by using substances extracted from Jerusalem Artichokes grown by the first author. Samples to be tested were extracted from hot water extraction and ethanol extraction methods according to conditions. To confirm the antioxidant properties, absorbance analysis, thin-layer chromatography (TLC) analysis, polyphenol measurement, flavonoid measurement, and radical scavenging ability measurement by DPPH were performed to determine whether the raw materials applied in this paper could be used. It was confirmed that Jerusalem Artichoke extract is a suitable additive raw material for functional pet food.
Disposable masks manufactured in response to the COVID-19 pandemic have caused environmental problems due to improper disposal methods such as landfilling or incineration. To mitigate environmental pollution, we suggest a new process for recycling these disposable masks for ultimate application as a conductive material in lithium-ion batteries (LIBs). In our work, the masks were chemically processed via amine functionalization and sulfonation, followed by carbonization in a tube furnace in the Ar atmosphere. The residual weight percentages, as evaluated by thermogravimetric analysis (TGA), of the chemically modified masks were 30.6% (600 °C, C-600), 24.5% (750 °C, C-750), and 24.1% (900 °C, C-900), respectively, thereby demonstrating the possibility of using our proposed method to recycle masks intended for disposal. The electrochemical performance of the fabricated carbonized materials was assessed by fabricating silicon/graphite (20:80) anodes incorporating these materials as additives for use in LIBs. Using a coin-type half-cell system, cells with the aforementioned carbonized materials exhibited initial capacities of 553 mAh/g, 607 mAh/g, and 571 mAh/g, respectively, which are comparable to those of commercial Super P (591 mAh/g). Cell cycled at the rate of 0.33 C with C-600, C-750, and C-900 as additives demonstrated capacity retention of 53.2%, 47.4%, and 51.1%, respectively, compared with that of Super P (48.3%). In addition, when cycled at rates from 0.2 to 5 C, the cells with anodes containing the respective additives exhibited rate capabilities similar to those of Super P. These results might be attributable to the unique surface properties and morphologies of the carbonized materials derived from the new recycling procedure, such as the size and number of heteroatoms on the surface.
본 연구는 수분함량과 미생물 첨가제가 알팔파 사일리지의 발효특성과 사료가치에 미치는 영향을 알아보기 위해 수행되었다. 알팔파는 개화 10% 시기에서 수확되었으며 수분 함량(M60, M50, M40 및 M30)이 60, 50, 40 및 30%일 때 각각 이용하였다. 1500g을 샘플링한 후, 증류수 10mL을 첨가한 미첨가구(NAD)와 Lactococcus lactis 와 Pediococcus pentosaceus의 혼합물을 증류수(0.1g/10mL)에 1.5 x 1010cfu/g 농도로 희석한 후 접종한 미생물 균주 첨가구(ADD)를 3개월 및 6개월 발효하였다. 수분 및 미생물 첨가제에 따른 연평균 알팔파의 조단백, 중성세제 불용성 섬유 및 산성세제 불용성 섬유에서 차이가 없었다(p>0.05). 모든 발효기간에서 pH는 ADD의 M40에서 가장 낮았다(p<0.05). NAD 처리구에서는 젖산이 M50에서 가장 높았고(p<0.05), ADD 처리군에서는 M40 시험구에서 젖산이 가장 높았다(p<0.05). NAD와 ADD의 M60은 젖산 함량이 다른 수분 함량들에 비해 가장 낮으며(p<0.05) 낙산이 유일하게 검출되었다. 미생물군집의 상대적 풍부도는 ADD 처리구의 M40과 M50에서 Homo LAB (Enterococcus, Lactiplantibacillus, Lacticaseibacillus, Lactococcus, Pediococcus)의 비율이 가장 높았고, Clostridium은 M60에서 가장 높았다.
In this study, we analyzed the changes in concentrations of volatile fatty acids (VFA), phenols, and indoles, as well as odor contribution in pig slurry. The pig slurry was stored for approximately two months after the manure excretion of pigs which had been fed 3% level of peat moss additive. The investigation was carried out through lab-scale experiments simulating slurry pit conditions within pig house. Throughout the storage period, the concentration of VFA exhibited a tendency to be 11%-32% higher in the pig manure treated with peat moss as compared to the control group. From a concentration perspective, phenol and acetic acid accounted for the majority of the total odor compounds produced during the pig slurry storage period. However, their significance diminished when the concentration of odoros compounds are converted into odor activity value and odor contribution. Despite the odor reduction effect of the ammonia (NH3) adsorption by peat moss, if it cannot effectively reduce the high odor-contributing compounds such as indoles and p-cresol, the sole use of peat moss may not be considered an effective means of mitigating odors produced by pig slurry. According to this study, indoles, p-cresol, skatole, and valeric acid were consistently revealed as major odor-contributing substances during the two-month storage of pig slurry. Therefore, a comprehensive odor mitigation methodology should be proposed, taking into consideration the odor generation characteristics (including temporal concentration and odor contribution) of pig slurry-derived odors during storage.