Activated carbon (AC) is a versatile and extensively employed adsorbent in environmental remediation. It possesses distinct properties that can be enhanced to selectively target specific pollutants through modifications, including chemical impregnation or incorporation into composite materials. In this study, porous calcium alginate beads (PCAB) were synthesized by incorporating AC and natural alginate through ion gelation in a Ca(II) ion-containing solution, with the addition of sodium lauryl sulfate as a surfactant. The prepared PCAB was tested for Cu(II) removal. PCAB exhibited a spherical shape with higher porosity and surface area (160.19 m2. g−1) compared to calcium alginate beads (CAB) (0.04 m2. g−1). The adsorption kinetics followed the pseudo-first-order model for PCAB and the pseudo-second-order model for CAB. The Langmuir isotherm model provided the best fit for adsorption on PCAB, while the Freundlich model was suitable for CAB. Notably, PCAB demonstrated a maximum adsorption capacity of 75.54 mg.g−1, significantly higher than CAB's capacity of 9.16 mg. g−1. Desorption studies demonstrated that 0.1 M CaCl2 exhibited the highest efficiency (90%) in desorbing Cu(II) ions from PCAB, followed by 0.1 M HCl and 0.1 M NaCl. PCAB showed efficient reusability for up to four consecutive adsorption– desorption cycles. The fixed-bed column experiment confirmed the match with the Thomas model to the breakthrough curves with qTH of 120.12 mg.g−1 and 68.03 mg.g−1 at a flow rate of 1 mL.min−1 and 2 mL.min−1, respectively. This study indicated that PCAB could be an effective adsorbent for Cu(II) removal, offering insights for further application and design considerations.
Globally, the operation of nuclear power plants results in the production of a tremendous quantity of spent nuclear fuel. The methods for handling spent nuclear fuel can be categorized into three: storage, direct disposal and recycling. A technology designed to recycle accumulated spent nuclear fuel is pyropocessing. In pyroprocessing, various fission products (FPs) such as C-14, H-3, I-129 and Cs-137 are generated. Among these FPs, technetium (Tc-99) is a gaseous nuclear isotope with a long half-life and high mobility in the form of TcO4 - in aqueous solutions, making it essential to capture strictly in order to prevent radioactive contamination of the environment. In previous studies, ion-exchange or adsorption using MOFs (Metal Organic Frameworks) have been used to remove Tc-99. These methods, however, involve separation in aqueous solutions, not in the gaseous state. In this study, we developed a CaO-based adsorbent for capturing Re as a surrogate for radioactive Tc-99. Isopropyl alcohol (IPA) was employed as a pore-forming agent during the preparation of the adsorbents, and its effects on characteristics and adsorption performance were investigated. The size of the pores were analyzed from nitrogen (N2) adsorption isotherm analysis and mercury (Hg) intrusion curves. As a result, it was confirmed that the addition of IPA had a significant impact on the formation of macro-pores. Furthermore, this macroporous structure was found to enhance the adsorption performance of Re.
In the ocean, there exist infinite resources, including certain metallic elements that can serve as potential energy sources. One of the methods for extracting these dissolved resources from seawater involves adsorption. This study discusses the results of experiments conducted in real seawater using a developed fiber-type adsorbent capable of extracting dissolved oceanic resources. The fiber-type adsorbent was deployed in seawater to adsorb the elemental resources. It was then retrieved after 2, 3, and 4 weeks for evaluation of its adsorption performance. The evaluation was carried out by dissolving the adsorbent in a strong acidic solution and calculating the adsorption amount per gram of adsorbent using ICP-MS. The results indicated that the adsorption performance was slightly lower than previously reported values. Nevertheless, it confirmed the feasibility of adsorbing and recovering dissolved resources from actual seawater
In this study, four technologies were selected to treat river water, lake water, and groundwater that may be contaminated by tritium contaminated water and tritium outflow from nuclear power plants, performance evaluation was performed with a lab-scale device, and then a pilot-scale hybrid removal facility was designed. In the case of hybrid removal facilities, it consists of a pretreatment unit, a main treatment unit, and a post-treatment unit. After removing some ionic, particulate pollutants and tritium from the pretreatment unit consisting of UF, RO, EDI, and CDI, pure water (2 μS/cm) tritium contaminated water is sent to the main treatment process. In this treatment process, which is operated by combining four single process technologies using an inorganic adsorbent, a zeolite membrane, an electrochemical module and aluminumsupported ion exchange resin, the concentration of tritium can be reduced. At this time, the tritium treatment efficiency of this treatment process can be increased by improving the operation order of four single processes and the performance of inorganic adsorbents, zeolite membrane, electrochemical modules, and aluminum- supported ion exchange resins used in a single process. Therefore, in this study, as part of a study to increase the processing efficiency of the main treatment facility, the tritium removal efficiency according to the type of inorganic adsorbent was compared, and considerations were considered when operating the complex process.
The removal of cesium (Cs) from contaminated clay minerals is still a challenge due to the limited efficiency of the process. Thus, this study aimed to enhance the removal for Cs+ ions during the conventional acid washing process by incorporating a bead-type adsorbent. Polyacrylonitrile-based nickel potassium hexacyanoferrate (NiFC-PAN) was utilized as the Cs adsorbent to selectively adsorb Cs+ ions in a strongly acidic solution that contained competing ions. To enable easy separation of clay particles and protect the adsorbent from harsh environmental conditions, PAN was deliberately constructed as large beads. The synthesized adsorbent (NiFC/PAN in a 2:1 ratio) displayed high selectivity for Cs+ ions and had a maximum capacity of 162.78 mg/g for Cs+ adsorption in 0.5 M HNO3 solution. Since NiFC-PAN exhibited greater Cs selectivity than the clay mineral (hydrobiotite, HBT), adding NiFC-PAN during the acid washing substantially increased Cs desorption (73.3%) by preventing the re-adsorption for Cs+ ions on the HBT. The acid treatment in the presence of NiFCPAN also significantly decreased the radioactivity of 137Cs-HBT from 209 to 27 Bq/g, resulting in a desorption efficiency of 87.1%. Therefore, these findings suggest that the proposed technique is a potentially useful and effective method for decontaminating radioactive clay.
Oysters are the most widely produced shellfish culture in Korea and 90% of their weight. Main component of oyster shell is CaCO3 and an appropriate calcination temperature was derived using thermo-gravimetric analysis. The difference in components for each calcination temperature was confirmed and the adsorbent was manufactured by activation. The oyster shell adsorbent surface area was 5.72m2/g with pores in the mesopore range. The adsorption amount was 37.44 mg/g. Therefore, the possibility of using oyster shell as an adsorbent was confirmed.
Benzene, toluene, ethylbenzene, and xylenes are commonly known as (BTEX) and include volatile organic compounds (VOCs) in ambient air. Exposure to some BTEX has been associated with health risks. This study aimed to reduce BTEX on the environment and human health dramatically. This research targeted decreasing the BTEX in an air environment by producing high surface area activated carbon (KA-AC) under optimized synthesis conditions from Ricinus communis as lignocellulosic waste using ZnCl2 solution, respectively. The influence of several activation parameters was investigated on the surface area, such as impregnation ratio, carbonization time, and carbonization temperature. The KA5-AC prepared under optimized conditions showed BET surface area and total pore volume of 1225 m2/ g, and 0.72 cm3/ g, respectively. The optimized synthesis conditions were as follows: 0.1, 0.5, 1, 2, and 5 M impregnation ratio, 450–950 °C carbonization temperature, and 100 min carbonization time. The characteristics of the optimized KA-AC were analyzed using nitrogen adsorption–desorption isotherm, scanning electron microscopy, and pore structural analysis. The results confirmed that the VOCs adsorption on KA-AC followed a monolayer adsorption isotherm over a homogeneous adsorbent surface. It showed the removal efficiency of benzene, toluene, ethylbenzene, and m, p-xylene (R2 = from 0.991 to 0.997). Moreover, the KA-AC exhibited good performance without considerable loss of efficacy throughout the experiments. Accordingly, it is concluded that developing low-cost activated carbon to use BTEX vapor adsorption research could be practical and developments to overcome for utilization in air pollution control.
Starfish are creatures that destroy marine ecosystems due to their high reproductive rate and predatory nature. Instead of mass incineration, this study attempted to utilize them as functional adsorbents to control odorous organic compounds. This waste starfishbased adsorbent showed a high aldehyde capture efficiency of 91.1%. The maximum specific surface area of the prepared waste starfish adsorbent was 2.19m2/g, and the adsorption amount was 101.66mg/g. Therefore, it was confirmed that the waste starfish had the ability to perform well as an adsorbent.
This study evaluated the synthesis of optimal materials for high efficiency adsorption and removal characteristics of Cs-137 for radioactive contaminated water, and considered thermal treatment methods to stabilize the spent adsorbent generated after treatment. We synthesized a composite adsorbent with a combination of impregnating metal ferrocyanide that improves the selectivity of Cs adsorption with zeolite capable of removing Cs as a support. The Cs removal efficiency of the composite adsorbent was evaluated, and the stability change of Cs according to the high-temperature sintering was evaluated as a stabilization method of the spent adsorbent. The metal ferrocyanide content of the adsorbent was in the range of 11.8~36.0%. The adsorption experiments were performed using a simulated liquid waste to have a total Cs concentration of 1 mg/L while containing a trace amount of Cs-137, and then gamma radioactivity was analyzed. In order to evaluate the stabilization of the spent adsorbent, heat treatment was performed in the range of 500~1,100°C, and the volatilization rate of Cs during heat treatment and the leaching rate of Cs after heat treatment were compared. In the adsorption experiment, the Cs removal efficiency was higher than 99%, regardless of the amount of metal ferrocyanide in the composite adsorbent. In the sintering experiment on the spent adsorbent, it was confirmed that there was no volatilization of Cs up to 850°C, and then the volatilization rate increased as the heating temperature increased. On the other hand, the leaching rate of Cs in the sintered adsorbent tends to significantly decrease as the heating temperature increases, so that Cs can be stabilized in the sintered body. In addition, as the content of metal ferrocyanide increases, the volatilization rate of Cs rapidly increases, indicating that the unstable metal ferrocyanide in the adsorbent may adversely affect the removal of Cs as well as the thermal treatment stability.
In this study, Fe3O4/ MgO/Activated carbon composite was used to remove arsenic ion (As (III)) from aqueous media. To this end, Frangula Alnus was used to prepare activated carbon (AC) by calcination in the furnace at 700 °C for 4 h and was then used to synthesize the MgO/Fe3O4/AC composite. To study the surface properties of the composite, various analyses such as SEM, EDX/Mapping, FTIR, DLS, BET and VSM were applied. According to the BET analysis, the specific surface area and average pore size of the Fe3O4/ MgO/AC composite were obtained as 190.92 m2/g and 7.57 nm, respectively, which showed that the aforementioned nanocomposite had a mesoporos structure with an excellent specific surface area. Also, VSM analysis indicated that the composite had a superparamagnetic property and could be easily separated from the solution by a magnet. Moreover, the results of the As (III) sorption indicated that the highest uptake efficiency was obtained 96.65% at pH = 7, adsorbent dosage = 0.13 g/L, t = 35 min, T = 45 °C and Co = 6 mg/L. In addition, the pseudo-second-order model could better describe the kinetic behavior of the sorption process. Furthermore, Langmuir model was the best model to describe the equilibroium behavior of the As(III) ion sorption. Besides, according to the the thermodynamic study, enthalpy change and entropy change were obtained 58.11 kJ/mol and 224.49 J/mol.K, respectively, indicating that the sorption process was spontaneous and endothermic. According to the results, the Fe3O4/ MgO/AC composite was a good adsorbent with the extraordinary properties, which can be used on an industrial scale.
The adsorption method that is widely used in the field of odor control generally utilizes activated carbon. However, the development of an economical and efficient adsorbent is required due to the increased use of activated carbon and the high cost of raw materials. Accordingly, the use of waste as a raw material for new adsorbents is attracting attention both in Korea and abroad. In this study, the current status of domestic and overseas waste generation, characteristics of adsorbents, and research trends were investigated, and through this, it was found that a waste-derived adsorbent was an adequate substitute in terms of adsorption capacity and price compared to activated carbon.
Here, Zn ferrite is synthesized along with reduced graphene oxide (rGO) by a facile one-step hydrothermal method. The difference between the synthesized nanocomposites with those in other reported work is that the reaction conditions in this work are 160 oC for 12 h. The synthesized products are characterized by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and attenuated total reflection. Further, the adsorption property of rGO–Zn ferrite (rGZF) nanocomposite is studied after confirming its successful synthesis. The adsorption capacity of rGZFs toward rhodamine B (RB) is ˃ 9.3 mg/g, whereas that of bare ZF nanoparticles is 1.8 mg/g in aqueous media. The efficiencies of rGZF and bare ZF to remove RB are 99 % and 20 %, respectively. Employing rGZF, 60 % of RB is decomposed within 5 min. The kinetic study reveals that the adsorption process of removing RB by bare Zn ferrite follows pseudo-firstorder kinetics. However, after zinc ferrite is incorporated with rGO, the kinetics changes to pseudo-second-order. Furthermore, the Langmuir isotherm is accomplished by the adsorption process employing rGZF, indicating that a monolayer adsorption process occurs. The thermodynamic parameters of the process are also calculated.
본 연구에서는 활성탄소를 이용하여 해양환경으로 유출된 침강 HNS를 현장에서 대응하기 위한 기술 개발을 목적으로, 활용 가능한 활성탄소의 조건을 검토하고 예상 소요량을 산출하였다. 입자 크기별 7종의 활성탄소들을 대상으로 침강 속도를 측정하였고, 침강 HNS로 분류된 클로로포름(CHCl3)에 대한 흡착용량을 실험실 규모 실험(lab-scale test)으로 측정하였다. 또한 7종 활성탄소들에 대하여 유해 물질함량과 용출 실험을 실시하여 용출된 유해물질 함량을 정량 분석하였다. 평균 침강속도(Mean particle-settling velocity)는 0.5~8 cm/sec의 범위로 8-20 mesh 경우를 제외하고 입자의 크기가 클수록 침강속도가 빨랐으며, 클로로포름에 대한 흡착효율은 대체로 입자가 작을수록 표면적이 넓어져 증가되었다. 또한 현장 투입 후 2차 오염가능성 확인을 위한 유해물질함량과 용출 실험 실험에서 >100 mesh의 활성탄소는 전함량분석결과가 아연(Zn)과 비소(As)가 수처리제기준보다 높고, 용출실험결과에서도 크롬(Cr), 아연(Zn), 비소(As)가 다른 활성탄소에 비해 높은 농도로 용출되었다. 흡착효율, 침강속도, 유해성분 용출량 등을 종합적으로 고려하여 현장 처리 적용 가능한 활성탄소는 20-60, 20-40, 2mm&down mesh 이었으며, 흡착용량을 최우선으로 판단하여 투입물량을 계산하면 최소 현장 투입 물량은 각각 0.82, 0.90, 1.28 ton/㎘ 이다.
The Odor-causing compounds from grilled meat restaurants are mainly ammonia, aldehydes, and volatile organic compounds (VOCs). Acetaldehyde is known to have the greatest odor contribution. This study examines the application of silica gel for acetaldehyde in gas stream. Heat-pretreated silica gel showed relatively good adsorption performance and at 150oC, its breakthrough capacity reached up to 51 mg/g. By using Thomas' dynamic model, which well estimated the adsorption performance in this study, the effects of inlet concentration and retention time on adsorption capacity were evaluated. The adsorbent saturated with acetaldehyde was regenerated by reducing the pressure, which was controlled by the vacuum pump. The design factors were found to be 10 sec−1 of space velocity, -184 kPa·hr of desorption condition, and 10 to 1 of the ratio of cross sectional area to the height for the fixed-bed. The cyclic operation of adsorption and desorption step in the fixed bed packed with silica gel appeared to have 7.0-8.8 mg/g of acetaldehyde removal capacity and 99% of regeneration.
Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) was functionalized with 3-amino-5-phenylpyrazole (MWCNTs- f) and characterized by FTIR, EDX, SEM, XRD and TGA. The MWCNTs-COOH and MWCNTs-f were used for the adsorption of Cd(II), Hg(II), and As(III) ions from aqueous solutions. Additionally, to study the influence of pH, adsorbent dose, and initial ions concentration on the adsorption process, the central composite design (CCD) was applied. The quadratic model was used for analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Timedependent adsorption can be described by the pseudo-second-order kinetic model, and adsorption process was modeled by Langmuir isotherm for the adsorbents. Thermodynamic analysis showed that the adsorption of Cd(II), Hg(II) and As(III) ions were spontaneous and endothermic. Moreover, the competitive adsorption capacities of the heavy metal ions were slightly lower than noncompetitive ones. The same affinity order was observed under noncompetitive and competitive adsorption: As(III) > Cd(II) > Hg(II) in the case of MWCNTs-f. Desorption study revealed the favorable regeneration ability of adsorbents powders, even after three adsorption–desorption cycles.
This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than –0.4 V and to the Freundlich isotherm at electrical potentials higher than –0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of –1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of 22.61 kJ mol–1 during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.