검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of annealing on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500oC causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 μm and from 2.9 to 6.3 μm, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.
        4,000원
        2.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.
        4,000원
        3.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
        4,000원
        4.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to broaden the range of application of light weight aluminum alloys, it is necessary to enhance the mechanical properties of the alloys and combine them with other materials, such as cast iron. In this study, the effects of adding small amounts of Cu and Zr to the Al-Si-Mg based alloy on tensile properties and corrosion characteristics were investigated, and the effect of the addition on the interfacial compounds layer with the cast iron was also analyzed. Although the tensile strength of the Al-Si-Mg alloy was not significantly affected by the additions of Cu and Zr, the corrosion resistance in 3.5 %NaCl solution was found to be somewhat lowered in this research. The influence of Cu and Zr addition on the type and thickness of the interfacial compounds layer formed during compound casting with cast iron was not significant, and the main interfacial compounds were identified to be Al5FeSi and Al8Fe2Si phases, as in the case of the Al-Si-Mg alloys.
        4,000원
        5.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.
        4,000원
        6.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 oC for 6 h, followed by water cooling, and samples were artificially aged in air at 180 oC and 220 oC for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 oC and above 300 oC, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 oC and 400 oC, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 oC and 400 oC was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
        4,000원
        7.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 μm were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.
        4,000원
        8.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C- 3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.
        4,000원
        9.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.
        4,000원
        10.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of 37μm. In addition to the Al matrix, a large amount of coarsened eutectic Si, Al2Cu intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.
        4,000원
        11.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous Al88Cu6Si6 eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous Al88Cu6Si6 eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The Al88Cu6Si6 eutectic alloy is composed of an α-Al dendrite phase and a single eutectic phase of Al2Cu and α-Al. We intended to remove only the α-Al phase and then the Al2Cu phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a H2SO4 solution. Only the α-Al phase was successfully leached while the morphology of the Al2Cu phase was maintained. The pore size was in a range of 1~5μm and the dealloying depth was nearly 3μm. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the Al2Cu phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as α-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the Al2Cu phase and sample statement.
        4,000원
        12.
        2012.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Two types of nanoclusters, termed Cluster (1) and Cluster (2) here, both play an important role in the age-hardening behavior in Al-Mg-Si alloys. Small amounts of additions of Cu and Ag affect the formation of nanoclusters. Two exothermic peaks were clearly detected in differential scanning calorimetry(DSC) curves by means of peak separation by the Gaussian method in the base, Cu-added, Ag-added and Cu-Ag-added Al-Mg-Si alloys. The formation of nanoclusters in the initial stage of natural aging was suppressed in the Ag-added and Cu-Ag-added alloys, while the formation of nanoclusters was enhanced at an aging time longer than 259.2 ks(3 days) of natural aging with the addition Cu and Ag. The formation of nanoclusters while aging at 100˚C was accelerated in the Cu-added, Ag-added and Cu-Ag-added alloys due to the attractive interaction between the Cu and Ag atoms and the Mg atoms. The influence of additions of Cu and Ag on the clustering behavior during low-temperature aging was well characterized based on the interaction energies among solute atoms and on vacancies derived from the first-principle calculation of the full-potential Korrinaga-Kohn-Rostoker(FPKKR)-Green function method. The effects of low Cu and Ag additions on the formation of nanoclusters were also discussed based on the age-hardening phenomena.
        4,000원
        13.
        2006.09 구독 인증기관·개인회원 무료
        Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, Al2Cu and Al2CuMg intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.
        14.
        2006.04 구독 인증기관·개인회원 무료
        The increasing demand for automotive industries to reduce the weight of the vehicles has led to a growing usage of Al alloy powder metallurgy (P/M) parts. In order to control the sintered microstructure and mechanical properties of the aluminium alloy powder metallurgical (P/M) parts, it is essential to establish a fundamental understanding of the microstructural development during the sintering process. This paper presents a detailed study of the effect of temperature and initial starting materials on the evolution of microstructure during the sintering of Al-Cu-Mg-Si blends for PM.