The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.
Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitchderived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.
To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.
Silicon oxide (SiOx) has been considered one of the most promising anode materials for lithium-ion batteries due to having a higher capacity than the commercial graphite anodes. However, its practical application is hampered by very large volume variations. In this work, pyrolysis fuel oil is the carbon coating precursor, and physical vapor deposition (PVD) is performed on SiOx at 200 and 400 °C (SiOx@C 200 and SiOx@C 400), followed by carbonization at 950 °C. SiOx@C 200 has a carbon coating layer with a thickness of ~ 20 nm and an amorphous structure, while that of SiOx@C 400 is approximately 10 nm thick and has a more semigraphitic structure. The carbon-coated SiOx anodes display better charge–discharge performance than the pristine SiOx anode. In particular, SiOx@C 200 shows the highest reversible capacity compared with the other samples at high C-rates (2.0 and 5.0 C). Moreover, SiOx@C 200 exhibits excellent cycling stability with a capacity retention of 90.2% after 80 cycles at 1.0 C. This result is ascribed to the suppressed volume expansion by the PFO carbon coating on SiOx after PVD.
Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0–8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ballmilled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.
The carbon anode material for lithium-ion battery was prepared by pyrolysis fuel oil and waste polyethylene terephthalate (PET) additive. The pitch was synthesized as a medium material for carbon anode by heat treatment. The waste PET additive improved the softening point and thermal stability of the pitch. La and Lc of the anode material (heat-treated pitch) increased at higher treatment temperature but decreased by waste PET additive. The electric capacity was evaluated based on effects of defective cavity and developed graphite interlayer, respectively. When the La and Lc of the anode material decreased, the electric capacity by cavity increased based on defective graphite structure. Therefore, the addition of waste PET causes the improved capacity by the cavity. The anode material which has a high efficiency (over 95%) and C-rate (95%, 2 C/0.1 C) was obtained by controlling the process of heat treatment and PET addition. The mechanism of lithium-ion insertion was discussed based on effects of defective cavity and developed graphite interlayer.
Lithium ion batteries have been extensively used in portable electronic devices due to their high energy density and long cycle life. Recently, lithium ion batteries are required to run conditions that drive up to 1.5C, 2.0C, or higher in order to produce quick charge secondary cells, but the life degradation and safety concerns and rising. In other words, as the number of repetitions of the charge and discharge increases, the binding between the active materials and the ionic conductors becomes loose, and the contact resistance between the particles increases, and due to the increased resistance of the electrode, the battery performance is degraded, and during the life cycle degradation of cathode and anode materials occurs, and it is directly linked to life and safety issues. This study aims to improve the quick charge performance by improving the lithium ion material.
Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.
The work presented in this report was a detailed comparative study of the electrochemical response exhibited by graphite anodes in Li-ion batteries having different physical features. A comprehensive morphological and physical characterization was carried out for these graphite samples via X-ray diffraction and scanning electron microscopy. Later, the electrochemical performance was analyzed using galvanostatic charge/discharge testing and the galvanostatic intermittent titration technique for these graphite samples as negative electrode materials in battery operation. The results demonstrated that a material having a higher crystalline order exhibits enhanced electrochemical properties when evaluated in terms of rate-capability performance. All these materials were investigated at high C-rates ranging from 0.1C up to 10C. Such improved response was attributed to the crystalline morphology providing short layers, which facilitate rapid Li+ ions diffusivity and electron transport during the course of battery operation. The values obtained for the electrical conductivity of these graphite anodes support this possible explanation.
In order to prepare anode materials for high power lithium ion secondary batteries, carbon composites were fabricated with a mixture of petroleum pitch and coke (PC) and a mixture of petroleum pitch, coke, and natural graphite (PCNG). Although natural graphite has a good reversible capacity, it has disadvantages of a sharp decrease in capacity during high rate charging and potential plateaus. This may cause difficulties in perceiving the capacity variations as a function of electrical potential. The coke anodes have advantages without potential plateaus and a high rate capability, but they have a low reversible capacity. With PC anode composites, the petroleum pitch/cokes mixture at 1:4 with heat treatment at 1000 oC (PC14-1000C) showed relatively high electrochemical properties. With PC-NG anode composites, the proper graphite contents were determined at 10~30 wt.%. The composites with a given content of natural graphite and remaining content of various petroleum pitch/cokes mixtures at 1:4~4:1 mass ratios were heated at 800~1200 oC. By increasing the content of petroleum pitch, reversible capacity increased, but a high rate capability decreased. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with an increase in heat treatment temperature. The carbonaceous composites fabricated with a mixture of 30 wt.% natural graphite and 70 wt.% petroleum pitch/cokes mixture at 1:4 mass ratio and heat treated at 1000 oC showed relatively high electrochemical properties, of which the reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 10 C/0.2 C), and charge capacity at 5 C were 330 mAh/g, 79 %, 80 %, and 60 mAh/g, respectively.
Expanded graphites were used as anode materials of high power Li-ion secondary battery. The expanded graphite was prepared by mixing the graphite with HClO4 as a intercalation agents and KMnO4 as a oxidizing agents. The physical and electrochemical properties of prepared expanded graphites through the variation of process variables such as contents of intercalation agent and oxidizing agent, and heat treatment temperature were analyzed for determination of optimal conditions as the anode of high power Li-ion secondary battery. After examing the electrochemical properties of expanded graphites at the different preparing conditions, the optimal conditions of expanded graphite were selected as 8 wt.% of oxidizing agent, 400 g of intercalation agent for 20 g of natural graphite, and heat treatment at 1000℃. The sample showed the improved charge/discharge characteristics such as 432 mAh/g of initial reversible capacity, 88% of discharge rate capability at 10 C-rate, and 24 mAh/g of charge capacity at 10 C-rate. However, the expanded graphite had the problems of potential plateaus like natural graphite and lower initial efficiency than the natural graphite.
The various expanded graphites (EGs) was prepared and applied as anode material for high power Li-ion secondary battery (LIB). By changing the processing conditions of EG, a series of EG with different structure were produced, showing the changed electrochemical properties. The charge-discharge test showed that the initial reversible capacity of EG anodes prepared at the suitable conditions was over 400 mAh/g and the charge capacity at 5 C-rate was 83.2 mAh/g. These values demonstrated the much improved electrochemical properties as compared with those for the graphite anode of 360 mAh/g and 19.4 mAh/g, respectively, showing the possibility of EG anode materials for high power LIB.
Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at 1000℃ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.