Nilaparvata lugens, brown planthoppers, is one of important pests on rice. Korean N. lugens is migrated from China and causing severe damages on rice in early September in Korea. For identifying biotypes of these N. lugens based on complete mitochondrial genomes, we completed mitochondrial genome of N. lugens captured in Hadong-gun, Gyoungsang-nam province in Korea. The circular mitogenome of N. lugens is 17,610 bp including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single large non-coding region of 2,424 bp. The base composition was AT-biased (89.5%). 112 single nucleotide polymorphisms (SNPs) and 59 insertions and deletions are identified by comparing with Chinese N. lugens. Based on phylogenetic trees together with those of N. lugens captured in China, no clear phylogenetic relationship along with five biotypes, requiring more researches to achieve biotype identification including detailed analysis of sequence variations on mitochondrial genomes and whole genome analysis of N. lugens in near future.
An assessment was made of the fumigant toxicity of 20 constituents from catnip oil and another additional five previously identified compounds of the oils and control efficacy of three experimental spray formulations containing catnip oil (1, 0.5 and 0.1% sprays) to females from B- and neonicotinoid-resistant Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Spathulenol (LC50, 0.39 μg/cm3) and thymol (0.45 μg/cm3) were the most toxic compounds, followed by carvacrol, α-terpineol, nerol, linalool, menthol and eugenol toward Q-biotype females (0.85–1.24 μg/cm3). The toxicity of these compounds was virtually identical toward both biotype females, indicating that the terpenoids and the insecticides (neonicotinoids and dichlorvos) do not share a common mode of action or elicit cross-resistance. The 0.5% spray of oil formulation resulted in > 80% mortality toward both biotype females. Global efforts to reduce the level of toxic synthetic insecticides in the agricultural environment justify further studies on catnip oil-derived materials as potential contact-action fumigants for the control of B. tabaci populations.
담배가루이(Bemisia tabaci)는 바이러스 매개 역할과 함께 참외에 심각한 경제적 피해를 주고 있다. 담배가루이는 기주 작물과 농약 감수성 정도에 따라 다양한 생태형으로 분류되고 있다. 본 연구는 안동시 풍천면에 소재한 참외밭에서 성충을 채집하여 PCR 분자진단기법으로 동정하 였다. 전체 11 곳의 채집 장소에서 Q 생태형 담배가루이를 진단하였고, 이 가운데 4 곳의 채집 장소에서 B 생태형도 검출되었다. 이러한 결과는 경북지역 참외 재배지에서 담배가루이가 발생한다는 최초의 보고이며, 특히 두 생태형이 동일한 재배지에 혼재한다는 것을 나타낸다.
The hemipteran whitefly Bemisia tabaci (Gennadius) is one of the most destructive pests damaging more than 600 agricultural crop species worldwide. The B and Q biotypes are most widely spread in Korea but they are not distinguishable based on morphological characters. In order to search for protein markers that can be employed for rapid and accurate diagnosis of biotypes, two-dimensional PAGE (2DE) in conjunction with mass spectroscopic analysis were conducted. Eleven biotype-specific spots were repeatedly identified during three repetitions of 2DE and analyzed by Q-TOF. One of the B type-specific protein spots was identified as carboxylesterase 2 (Coe2). The transcript level of coe2 was determined to be 6 times higher in B type than in Q type by quantitative real-time PCR. In addition, comparison of genomic DNA sequence of coe2 between B and Q types identified a biotype-specific intron, from which specific primer sets were designed. One-step PCR using these biotype-specific primers successfully distinguished the two biotypes in a high accuracy. Availability of the biotype-specific protein and DNA markers will greatly improve the detection of B. tabaci biotype in the field.
Nymphal development of the B and Q biotypes of Bemisia tabaci was normal on all seven tomato varieties tested. However, their nymphal development was different on red pepper varieties. B biotype was not normally developed on nine red pepper varieties tested. On the contrary, Q biotype was normally developed, but its adult emergence rate was very low in Nokkwang variety than in other eight varieties. The EPG analysis of the feeding behavior of Bemisia tabaci showed that B and Q biotypes had different duration of phloem phases on red pepper. Q biotype showed longer phloem phases than B biotype. On Nokkwang variety, Q biotype had short phloem phases and did not prefer to feed on Nokkwang variety. Interestingly, Q biotype was found to have long duration of phloem phases on eight red pepper varieties, but B biotype did not prefer to feed on red pepper varieties. However, both biotypes did not show any difference in feeding time on tomato varieties.
Tobacco whitefly-Bemisia tabaci is considered one of the most important pests in tropical and subtropical agriculture, as well as in production systems in glasshouses in temperate zones. Principle research on the identity of B. tabaci began with the recognition of more than one biotype differing in life history parameters, host plant associations, plant-related damage and insecticide resistance. Our laboratory strains of B. tabaci were identified and classified as biotype B and Q, through mtCOI PCR. Also, they were tested for their host plant preference and reaction to different insecticide. Biotype Q prefers to feed on red pepper and tomato, was less susceptible to tested insecticides, for instance acetamipirid, spinosad and thiamethoxam, than the biotype B (feed on tomato alone). There has been a report on the presence of gut bacteria in B. argentifolii (= B. tabaci biotype B) and its influence on the host insect processes. Hence, as a further pursuit, we examined our laboratory B. tabaci biotypes B and Q for their gut bacteria, whether these two biotypes are differed with each other. Gut bacterial strains isolated by standard surface sterilization method was identified through 16S rRNA gene sequence. Gut bacterial strains of B. tabaci biotypes B and Q and their close relatives retrieved from the public database (NCBI) indicated that the biotype B was less diversified only with four genera viz., Bacillus, Micrococcus, Pseudomonas and Staphylococcus, whereas the biotype Q diversified with six such as Bacillus, Janibacter, Micrococcus, Staphylococcus, Stenotrophomonas, and Streptomyces. Results of the present investigation suggesting that there may be a relationship with gut bacterial strains and susceptibility to insecticides and host plant preference of B. tabaci biotype B and Q.
Biotype Q of Sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) was raised in seven tomatoes and eight red pepper varieties; however, biotype B did not grow in red pepper varieties. Rokkusanmaru variety of tomato and Cheongpungdaegun variety of red pepper showed the highest susceptibility to biotype B and Q. HPLC (ELSD Detector) analysis showed that the presence of sugars such as erythritol, xylose, xylitol, fructose, glucose, mannitol, and sucrose in red pepper varieties; erythritol, xylose, fructose, glucose, and mannitol was in tomato varieties. Tomato varieties lacks xylitol and sucrose, which were present in the red pepper varieties. Subsequent bioassay with these two sugars, sucrose did not show significant difference between two biotypes; however, xylitol was showed only repellent effect against B biotype. Therefore, it seems that xylitol may play a key role in the selection of host plant by biotype B of sweetpotato whitefly.
The feeding behaviors of 2 biotypes (type B and Q) of tobacco whitefly, Bemisia tabaci, were monitored using EPG technique on tomato and pepper plants treated 3 insecticides for controlling whiteflies, for examples, acetamiprid, spinosad and thiamethoxam. After treatment of three insecticides with recommended concentrations to tomato and pepper plants, EPG waveforms were recorded during 6 hours. The characteristic patterns of feeding behaviors investigated were as follows, time consumed by withdrawal of proboscis, total non-penetration time, total stylet pathway pattern time and total phloem feeding time. There was somewhat difference among 3 insecticides tested. As a result of investigation of total duration showed the stylet pathway activity due to the reaction against all tested insecticides, the Q biotype showed fewer time than those from the B biotype. The B biotype showed more frequent stylet pathway activity patterns during whole recording time and a shorter phloem ingestion time than those from the Q biotype. In result of prior np (non-penetration) time representing the reaction against the insecticide treated, the time of B biotype was more faster than that of the Q biotype, so it was considered that the B biotype was more sensitive to the tested insecticides. Therefore, our results revealed a clear difference in feeding behaviour between the Band Q biotypes of B. tabaci. Also, it was investigated that B biotype was susceptible to the 3 insecticides.
2005년 5월 충청이남 지역의 온실에서 담배가루이의 발생 상황을 조사한 결과 충남 북, 전남 및 경남에서 착색단고추, 토마토, 오이, 장미 등의 시설 재배지에 담배가루이가 발생한 것을 확인하였으나 전북과 경북에서는 발견할 수 없었다. 각 지역별로 발생한 담배가루이의 계통(biotype)과 근연관계를 조사할 목적으로 충을 채집하여 16S DNA 염기서열 분석을 수행하였다. 그 결과 진천에서 채집한 담배가루이의 16S DNA 염기서열은 일본 및 이스라엘에서 보고된 B 계통의 DNA와 상동성이 높았고 충남 부여, 경남 거제 및 전남 보성 채집 충은 상호간에 동일한 염기서열을 보여 주었으며 스페인과 이집트의 Q계통의 DNA와 99% 이상의 높은 상동성을 보였다. 그러므로 본 논문은 담배가루이 Q 계통이 국내에 유입되었음을 알리는 최초의 보고이다. 이는 1998년부터 진천에서 발생한 담배가루이 B 계통과는 별도로 담배가루이 Q 계통이 최근에 국외의 동일한 지역내지는 국가로부터 이들 지역의 시설재배지에 유입된 것으로 추정된다.
임의증폭 다형 DNA(RAPD)와 미토콘드리아 12S, 16S rRNA 유전자의 제한단편 DNA 표식자에 의해 한국에서 발생하는 담배가루이 개체군들의 biotype을 판별하였다. 진천의 장미 온실과 서울 내곡동의 포인세티아 온실에서 발생한 담배가루이는 일본, 이스라엘, 호주의 B biotype 과 동일한 DNA 단편들을 보유하였다. 여러 지역의 노지 콩 (Glycine max), 고구마 (Ipomea batatas), 들깨 (Perilla frutescens)에서 채집된 담배가루이 개체군들은 일본 시코쿠의 인동덩굴(Lonicera japonica)에서 채집된 담배가루이와 같은 DNA로 표식되었다. 이들 non-B biotype은 한국, 일본 등 극동아시아 지역에 고유한 계통으로 보인다. 최근 한국에서 발견된 담배가루이 Bemisia tabaci(Gennadius)의 주사전자현미경 관찰에 의한 형태적 특정을 온실 원예작물의 주요해충인 온실가루이 Trialeurodes vaporariorum (Westwood)와 비교하여 기재하였다.
벼멸구 생태형 1, 2, 3의 형태의 차이를 구별하고자 장시형과 단시형 암수를 대상으로 형태적 변화를 관찰하였다. 암컷은 생식 부위인 Abdominal lateral lobes의 좌우 부위를 비교 조사하였다. 수컷은 앞다리, 가운데 다리, 뒷다리 부절의 Unguitractor plate를 조사하였다. 생태형 2의 단시형 암컷은 Abdominal lateral lobes의 기부가 잘라진 것으로 생태형 1과 3보다 많았다. Unguitractor plate의 경우 생태형 2는 장단시형 암 수 모두 부절 안쪽으로 함입되어 있었다.
우리나라에 발생하고 있는 벼멸구 생태형의 형태적 차이를 구명하고자 생태형 1, 2, 3의 단시형 암컷과 숫컷의 다리부분의 형태를 관찰하였다. 앞다리, 가운데 다리 그리고 뒷다리의 제3부절의 형태를 51개 부위에서 조사한 다음 통계학적 분석을 위하여 정준 판별 분석법을 도입하였다. 각 생태형간의 Mahalanobis distance는 숫컷의 경우 생태형 2와 3 사이에서 가장 짧았고, 암컷은 생태형 1과 2 사이에서 가장 길었다. Scatter plot diagram상에서 각 생태 형간 분리현상이 뚜렷하여 중심점이 각각 다르게 나타났고 각 생태형에 속하는 개체는 중심점 부근에 고르게 분포하였다. 각 생태형간의 Group membership 조사에서 암수 모두 각 생태형은 각각 동일한 생텨형을 분류되었다.
벼멸구 수컷 정소에서 염색체의 변이정도를 생태형 별로 관찰하였다. 세포 분열 지수는 생태형 3에서 가장 높았고 그 다음으로 생태형 1, 생태형 2이었다. Agmatoploidy, aneuploidy, 성염색체의 loose pairings과 같은 염색체의 구조적 변화는 생태형 1, 생태형 2, 생태형 3순으로 높았다. 감수분열 제1분열기 중기는 성염색체가 상염색체로부터 현격하게 분리되어 있는 세포의 수는 생태형 2에서 가장 높았다.
벼멸구에 대한 벼품종의 저항성요인으로 주목되고 있는 선호성, 란 및 약충기간, 부화 및 우화률, 성비, 성충의 수명 및 산란력 등을 조사하였다. 식이 및 산란선호성은 동률벼에서 생태형 모두 높은 선호성을 보였으며, 청청벼와 밀양63호에서는 각각 생태형-2와 3에서 약간 높은 선호성을 보였으나, 동률벼에 비해서는 현저히 낮은 선호성이었다. 난 및 약충기간과 부화율, 우화률 및 생장 지수는 생태형-1의 경 우 타 품종에 比해 密陽 23號에 서 짧고, 높았으며 , 또態型-2와 3 은 各各 좁 팍벼 와 密陽 63號에 서 密陽 23號에서와 같이 짧고, 높게 나타났다. 성충의 수명과 산란수도 생태형-1의 경우 타 품종에 비해 밀양 23호에서 길고, 많았으며, 생태형-2와 3은 각각 청청벼와 밀양 6 63호에서 밀양 23호에서와 같이 수명이 길고 산란수도 많았다.
우려나라로 비래해 오는 벼멸구 생태형을 한기에 판별할 수 있는 검정방법과 벼멸구 발생상습지역인 경남, 전남 지역에 비래하고 있는 벼멸구의 생태형 분포비율을 조사한 결과 다음과 같다. 밀양 23호는 생태형-1,2,3에서, 청청벼는 생태형-2에서, 생태형-3에서 감로비설면적과 무게가 모두 높게 나타난 반연, 가야벼는 생태형 1, 2, 3 모두 낮았다. 벼멸구 비래시에는 생태형-3의 비율이 다소 높았으나 장에서 2세대 경과된 후에는 생태형-3이 감소하고 생태형-1과 2의 비율이 다소 증가하였는데 , 전체적으로 생태형 분포비률을 보면 1985년에 는 생태형 1,2,3이 각각 64.7%, 22.0%, 13.3%, 1986년에 는 61.2%, 21.9%, 17.0% 1987년에는 57.9%, 29.7%, 12.6%였다.
유묘(幼苗)의 저항성반응(抵抗性反應)은 추청(秋晴)벼가 생태형교잡종(生態型交雜種) 모두에 감수성(感受性)이었고, 청청(靑靑)벼는 생산형(生産型) , 밀양63호(密陽63號)는 생태형(生態型)에 감수성(感受性)이었다. 청청(靑靑)벼와 밀양63호(密陽63號)는 생태형(生態型)과 우에 중간성(中間性)이었다. 식이(食餌) 및 산란선호성(産卵選好性)은 추청(秋晴)벼에서 생태형(生態型) 교잡종(交雜種) 모두 높은 선호율(選好率)을 보였고, 청청(靑靑)벼에는 생태형(生態型) , 밀양63호(密陽63號)에는 생태형(生態型) 이 높은 선호율(選好率)을 나타냈다. 모든 생태형(生態型) 교잡종(交雜種)의 섭식량(攝食量)은 추청(秋晴)벼에서 많았으며, 청청(靑靑)벼에는 생태형(生態型) , 밀양63호(密陽63號)에는 생태형(生態型) 의 섭식량(攝食量)이 많았다.
The brown planthopper, N. lugens (Stal), has become a serious pest of rice in tropical Asia during the last decade. At high pest density, its feeding damage causes 'hopperburn' or complete wilting and drying of the rice plant. It also transmits grassy and ragged stunt virus diseases. The estimated losses caused by the pest in tropical Asia exceed millions. While cultivation of resistant rice varieties has proved to be highly effective against the pest, their long-term stability is threatened because of the evolution of prolific biotypes which can destroy these varieties. At present, identification of biotypes is based principally on the differential reactions of host rice varieties to the pest and on host-mediated behavioral and physiological responses of the pest. Recent findings of morphological differences in adult rostrum, legs, and antennae, body parts that possess receptors for host plant location and discrimination, and cytological differences in N. lugens populations maintained as stock cultures strongly complement other biotype studies. So far, three N. lugens biotypes have been identified in the Philippines. Biotype I can survive on and damage varieties that do not carry and genes for resistance, while Biotype 2 survives on resistant varieties carrying Bph 1 gene and Biotype 3 on varieties carrying gene bph 2. However, none of these biotypes can survive on varieties with genes Bph 3 or bph 4. Several varieties which are resistant in the Philippines are susceptible in India and Sri Lanka as the South Asian biotypes of N. lugens are more virulent than Southeast Asian biotypes. To monitor the pest biotypes in different geographical regions and to identify new sources of resistance, an International Brown Planthopper Nursery has been established in many cooperating countries. The evolution of biotypes is an exceedingly complex process which is governed by the interactions of genetic and biological factors of the pest populations and the genetic makeup of the cultivated varieties. While the strategy for sequential release of varieties with major resistance genes has been fairly successful so far, the monegenic resistance of these varieties makes them vulnerable to the development of the pest biotypes. Therefore, present breeding endeavors envisage utilizing both major and minor resistance genes for effective control of the pest.