검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The utilization of carbonaceous reinforcement-based polymer matrix composites in structural applications has become a hot topic in composite research. Although conventional carbon fiber-reinforced polymer composites (CFRPs) have revolutionized the composite industry by offering unparalleled features, they are often plagued with a weak interface and lack of toughness. However, the promising aspects of carbon fiber-based fiber hybrid composites and hierarchical composites can compensate for these setbacks. This review provides a meticulous landscape and recent progress of polymer matrixbased different carbonaceous (carbon fiber, carbon nanotube, graphene, and nanodiamond) fillers reinforced composites’ mechanical properties. First, the mechanical performance of neat CFRP was exhaustively analyzed, attributing parameters were listed down, and CFRPs’ mechanical performance barriers were clearly outlined. Here, short carbon fiber-reinforced thermoplastic composite was distinguished as a prospective material. Second, the strategic advantages of fiber hybrid composites over conventional CFRP were elucidated. Third, the mechanical performance of hierarchical composites based on carbon nanotube (1D), graphene (2D) and nanodiamond (0D) was expounded and evaluated against neat CFRP. Fourth, the review comprehensively discussed different fabrication methods, categorized them according to performance and suggested potential future directions. From here, the review sorted out three-dimensional printing (3DP) as the most futuristic fabrication method and thoroughly delivered its pros and cons in the context of the aforementioned carbonaceous materials. To conclude, the structural applications, current challenges and future prospects pertinent to these carbonaceous fillers reinforced composite materials were elaborated.
        8,000원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acrylonitrile–butadiene–styrene (ABS) terpolymer was compounded with short carbon fiber (CF) and carbon nanotube (CNT) using a micro-extruder followed by the injection molding process. Composite samples were fabricated with loading ratios of 20 wt.% CF and 0.1, 0.5 and 1.0 wt.% of CNT. Mechanical, electrical, thermo-mechanical, thermal, melt-flow, and structural investigations of ABS-based composites were conducted by performing tensile, impact, hardness, and wear tests, conductive atomic force microscopy (AFM), dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA), melt flow rate test (MFR), scanning electron microscopy (SEM) characterization techniques, respectively. According to mechanical test data of resultant composites including tensile and impact test findings, CNT additions led to the remarkable increase in tensile strength and impact resistance for CF reinforced ABS composites. The formation of synergy between CNT nanoparticles and CF was confirmed by electrical conduction results. The conductive path in ABS/CF composite system was achieved by the incorporation of CNT with different loading levels. SEM micrographs of composites proved that CNT nanoparticles exhibited homogeneous dispersion into ABS matrix for lower loadings.
        4,300원
        3.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this present investigation, machinability studies on novel aluminum composite with hybrid reinforcements of copper-coated 4% carbon fibers (CFs) and 3% nanoclay in AA6026 matrix fabricated by compocasting method is performed. Step drill bit and multifaceted drill bit are used by adopting central composite design (CCD) in response surface methodology (RSM). The outcomes show that, with a rise in rotational speed surface irregularities, resultant force and material removal rate (MRR) intensifies, and with the additional rise in rotational speed, all the outputs decrease considerably. High MRR, resultant cutting force, and surface roughness are obtained with multifaceted carbide drills, compared with a step drill. Desirability function is used to maximize the MRR and minimize the resultant cutting forces considering the constant surface roughness of 3 μm. The optimal values are rotational speed of 1285 rpm, feed rate of 60 mm/min with the step drill bit, producing an MRR of 0.0439 kg/sec and a resultant cutting force of 185.818 N. The second-order empirical models are developed for outputs, which are fed into the non-traditional metaheuristic Evaporation Rate-based Water Cycle Algorithm (ER-WCA) therefore the lower objective value is achieved with step drill of 51.7421. It is found that using a step drill the machinability performance of this hybrid nanocomposite is well improved than the machining with other drill bits. This composite fulfills the norms of 2000/53/CE-ELV European environmental directives.
        5,400원
        4.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fiber and its composites are increasingly used in many fields including defence, military, and allied industries. Also, surface quality is given due importance, as mating parts are used in machineries for their functioning. In this work, the turning process is considered for Carbon Fiber Reinforced Polymer (CFRP) composites by varying three important cutting variables: cutting speed, feed, and depth of cut. Correspondingly, the surface roughness is measured after the completion of turning operation. As well, a prediction model is created using different fuzzy logic membership function and Levenberg–Marquardt algorithm (LMA) in artificial intelligence. Later, the surface roughness values from the developed models are compared against the experimental values for its correlation and effectiveness in using different membership functions of fuzzy logic and ANN. Thus, the experimental results are analyzed using the effect graphs and it is presented in detail.
        4,500원
        5.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon short fibers/copper composites with different carbon short fiber contents up to 15 wt.% as reinforcements are prepared to investigate the influence of the carbon short fiber surface coating on the microstructure, density, and electrical properties of the carbon short fibers/copper composites. The carbon short fibers were surface treated by acid functionalization followed by alkaline treatment before the coating process. It was observed from the results that coated type copper nanoparticles were deposited on the surface of the carbon short fibers. The surface treated carbon short fibers were coated by copper using the electroless deposition technique in the alkaline tartrate bath by using formaldehyde as a reducing agent of the copper sulfate. The produced coated carbon short fibers/copper composite powders were cold compacted at 600 MPa, and then sintered at 875 °C for 2 h under (hydrogen/nitrogen 1:3) atmosphere. A reference copper sample was also prepared by the same method to compare between the properties of pure copper and the carbon short fibers/copper composites. The phase composition, morphology, and microstructure of the prepared carbon short fibers/copper composite powders as well as the corresponding carbon short fibers/copper composites were investigated using X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDS), respectively. The density and the electrical resistivity of the sintered composites were measured. It was observed from the results that the density was decreased; however, the electrical resistivity was increased by increasing the carbon short fibers wt.%.
        4,300원
        6.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study provides an economical and effective method to improve the interlaminar properties of carbon fiber-reinforced polymers (CFRPs) using aluminum trihydroxide (ATH) microparticles. ATH microparticles are cheap and are expected to show good affinity to epoxies in the matrix and sizing agents of the carbon fibers owing to the presence of three hydroxyl groups. In addition, ATH particles are reported to improve the mechanical properties of polymers when used as the reinforcement. In this study, ATH microparticles of various sizes, 1.5, 10, and 20 μm, were used to improve the interlaminar properties of the CFRPs. ATH particles with a size of 1.5 μm improved the tensile properties of the ATH/epoxy resin and did not significantly alter the curing behavior. The interfacial adhesion between the carbon fiber and the epoxy resin was also improved, and the impregnation of the resin mixture remained similar to that of the neat resin, resulting in no significant void and defect formation. Considering the above results, the resulting 1.5 μm ATH-reinforced CFRP showed improved interlaminar properties compared to CFRP without ATH. However, 10 and 20 μm ATH-reinforced CFRPs showed deteriorated interlaminar properties due to the diminished tensile properties of the resin itself and resin impregnation, which resulted in more voids and defects, despite the interfacial adhesion between the fiber and the matrix resin.
        4,000원
        8.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers (CFs) have a unique combination of properties which allow them to be widely used as reinforcing materials in advanced polymer composites. The mechanical properties of CF-reinforced polymer composites are governed mainly by the quality of interfacial adhesion between the CFs and the polymer matrix. Surface treatments of CFs are generally carried out to introduce chemical functional groups on the fiber surfaces, which provide the ability to control the surface characteristics of CFs. In this study, we review recent experimental studies concerning various surface treatment methods for CFs. In addition, direct examples of the preparation and properties of CF-reinforced thermosetting composites are discussed.
        4,200원
        9.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.
        4,500원
        10.
        1994.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 원료 석탄 핏치와 흑연화성이 우수한 THF 가용성분만을 추출한 핏치 결합재에 8H/Satin woven fabric 프리프레그 및 고탄성 및 고강도계 연속 탄소섬유 등을 보강하여 가압열성형법으로 green body 를 제조한 다음 탄화, 함침, 재탄화 및 흑연화 공정을 거쳐 열적 미 기계적물성이 우수한 CFRC를 제조하였으며, 주사전자현미경, 편광현미경, X선회절분석,열중량분석, 굴곡강도, 굴곡탄성률, 충간전단강도 등을 시험하였다. THFSP결합재를 2300˚C까지 열처리 한 다음 X선회절분석을 한 결과, 결정성이 가장 우수하여 (002) 면에서 C0/2인 값이 3.380Å였으며, 2θ값도 26.276˚로 천연흑연의 Bragg angle에 거의 접근하였으며 공기산화 반응특성을 시험하기 위하여 등온 열중량분석을 한 결과 2300˚C까지 흑연화 한 THFSP결합재가 산화에 대하여 가장 우수한 저항성을 나타내었다. 섬유용적률이 증가됨에 따라 65~70%까지는 기계적 물성이 중가하는 경향을 보였지만 그이상 섬유가 보강된 CFRC는 결합재의 부족으로 인하여 오히려 기계적 물성이 감소하였다. 또한 굴곡강도 시험후 주사전자현미경으로 파괴 단면을 관찰한 결과 THFSP결합재가 흑연화성이 우수하여 파괴시 결합재가 외력에 대한 흡수가 양호하여 보강재의 파괴를 억제했기 때문에 기계적 물성도 우수하게 나타났다.
        4,300원
        11.
        1992.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 2D-woven fabric에 결합재로 페놀수지를 사용하여 성형한 CFRP의 탄화거동을 관찰하였다. TMA분석 결과 적층 두께방향에서는 365-370˚C 법선방향에서는 118-128˚C 에서 치수변화가 일어났다. 각 온도 구간별로 광학현미경으로 관찰한 결과 CFRP제조시 형성된 크랙이나 기공은 열처리온도에 따라 성장하였으며, 400-500˚C 부근에서 새로운 많은 크랙이 형성되었다. 기공률과 밀도가 400-500˚C 에서 급격히 변화한 것을 볼 때 이 구간에서 복합재 내부에서 크랙이 형성 및 성장하는 것을 알 수 있었다. 따라서 CFRP를 탄화할 때 승온속도를 구간별로 조절할 필요성이 있는 것으로 판단되었다.
        4,000원
        12.
        2019.07 KCI 등재 서비스 종료(열람 제한)
        탄소섬유는 경량이면서 높은 기계적 특성 때문에 우주항공, 선박, 자동차, 토목 및 건축과 같은 산업분야에서 그 어느 때 보다 더 광범위하게 적용되고 있다. 본 연구는 섬유혼입률 및 섬유길이 변화에 따른 탄소섬유 보강시멘트 복합재료( CFRC)의 역학적 특성과 휨 거동을 분석하였으며, 또한 자연 낙하시험에 의한 모르타르 시편에 대한 내충격성을 비교, 검토하였다. 더불어, 탄소섬유(CF)의 혼입률은 0.5%, 1.0%, 2.0% 및 3.0%로 변화를 주었으며, 각각의 섬유길이는 6 mm와 12 mm를 사용 하였다. 실험결과, 플로우 값은 탄소섬유의 뭉침현상으로 인해 유동성 측면에서 매우 불리하였으며, 단위용적질량은 다소 감소하였다. 특히, 압축강도는 탄소섬유 혼입량이 증가함에 따라 감소하는 것으로 나타내었다. 반면 휨 강도는 섬유 길이가 12 mm이고 2% 혼입한 것이 가장 높은 휨 강도를 보였다. 내충격성 시험결과, 보통 모르타르 시편은 완전파괴까지의 낙하횟수가 2∼3회 정도 걸리지만 반면 CFRC 시편은 섬유혼입량이 증가함에 따라 다소 차이가 있지만, 섬유길이가 12 mm이고 섬유혼입량 2% 인 경우 충격에 대한 저항성이 가장 높았다.
        13.
        2017.04 서비스 종료(열람 제한)
        This paper describes the electrical characteristics of carbon fiber reinforced cement composite under compressive loading. The test results indicated that the electrical resistance changes of cement composite in compression were improved with increasing carbon fiber volume fractions.
        14.
        2017.04 서비스 종료(열람 제한)
        It is known that all of structures be old enough not to use as time elapses, and the degree of deterioration depends on the environmental conditions and maintenance activity. Specific repair for deteriorated structures should be applied and the performances are greatly affected by materials used and location of members allocated. This study is to evaluate the enhancement of steel pipe pile in terms of performance when they are reinforced by carbon-fiber composite for underwater.
        15.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        This paper describes the electrical characteristics of carbon fiber reinforced cement composite under compressive loading. The test results indicated that the electrical resistance changes of cement composite in compression were improved with increasing carbon fiber volume fractions.
        16.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        It is known that all of structures be old enough not to use as time elapses, and the degree of deterioration depends on the environmental conditions and maintenance activity. Specific repair for deteriorated structures should be applied and the performances are greatly affected by materials used and location of members allocated. This study is to evaluate the enhancement of steel pipe pile in terms of performance when they are reinforced by carbon-fiber composite for underwater.