PURPOSES : This study provides fundamental information on the temperature variations in tunnel structures during severe fire events. A fire event in a tunnel can drastically increase the internal temperature, which can significantly affect its structural safety. METHODS : Numerical simulations that consider various fire conditions are more efficient than experimental tests. The fire dynamic simulator (FDS) software, based on computational fluid dynamics (CFD) and developed by the National Institute of Standards and Technology, was used for the simulations. The variables included single and multiple accidents involving heavy goods vehicles carrying 27,000 liters of diesel fuel. Additionally, the concrete material characteristics of heat conductivity and specific heat were included in the analysis. The temperatures of concrete were investigated at various locations, surfaces, and inside the concrete at different depths. The obtained temperatures were verified to determine whether they reached the limits provided by the Fire Resistance Design for Road Tunnel (MOLIT 2021). RESULTS : For a fire caused by 27,000 liters of diesel, the fire intensity, expressed as the heat release rate, was approximately 160 MW. The increase in the carrying capacity of the fire source did not significantly affect the fire intensity; however, it affected the duration of the fire. The maximum temperature of concrete surface in the tunnel was approximately 1400 ℃ at some distance away in a longitudinal direction from the location of fire (not directly above). The temperature inside the concrete was successfully analyzed using FDS. The temperature inside the concrete decreased as the conductivity decreased and the specific heat increased. According to the Fire Resistance Design for Road Tunnel (MOLIT 2021), the internal temperatures should be within 380 ℃ and 250 ℃ for concrete and reinforcing steel, respectively. The temperatures were found to be approximately 380 ℃ and 100 ℃ in mist cases at depths of 5 cm and 10 cm, respectively, inside the concrete. CONCLUSIONS : The fire simulation studies indicated that the location of the maximum temperature was not directly above the fire, possibly because of fire-frame movements. During the final stage of the fire, the location of the highest temperature was immediately above the fire. During the fire in a tunnel with 27,000 liters of diesel, the maximum fire intensity was approximately 160 MW. The capacity of the fire source did not significantly affect the fire intensity, but affected the duration. Provided the concrete cover about 6 cm and 10 cm, both concrete and reinforcing steel can meet the required temperature limits of the Fire Resistance Design for Road Tunnel (MOLIT 2021). However, the results from this study are based on a few assumptions. Therefore, further studies should be conducted to include more specific numerical simulations and experimental tests that consider other variables, including tunnel shapes, fire sources, and locations.
지하구조물의 건전성을 평가하기 위한 비파괴시험으로써 탄성응력파를 이용한 충격반향탐사법을 수치해석적인 방법을 통하여 수행하였다. 즉, 일면만으로 접근 가능한 터널 면에서의 충격가진과 동적응답의 측정으로 이질면을 포함한 내부의 상태를 예측할 수 있다. 연구의 수행은 탄성거동을 하는 매질 내부에서 전파되는 탄성응력파의 특성을 이해하고, 이를 동적 유한요소해석으로 모형화하여 충격반향탐사법을 수치해석적으로 수행한다. 이질재료가 2개의 층을 이루고 있는 경우 표면층의 두께를 쉽게 측정할 수 있었으며, 구조물의 병진운동, 휨운동과 구조물 내에서 다중반사되는 탄성응력파에 의한 복합적인 영향을 받는 터널과 같은 원통형 구조물에서 동적응답의 주파수 특성으로부터 터널라이닝 내부에 형성된 공동의 위치와 크기의 예측이 가능하였다. 수치해석적인 방법과 병행하여 다양한 형태의 경계조건을 가지는 구조물에 대한 충격반향탐사법의 실험을 수행할 경우 실제적인 문제에 적용, 건전성 평가의 지표를 마련할 수 있을 것으로 사료된다.
It is necessary to establish countermeasures to prevent spalling in the tunnel ceiling concrete lining from being linked to lack of lining thickness, leading to additional spalling. We analyzed the effect of thinning between the ceiling part and the lining thickness on the safety of the tunnel and confirmed the structural behavior of the lining based on the measured values after practically reinforcing the inside and filling the inside of the lining.
In Korea, inspection and precise safety diagnosis is regularly carried out to maintain and manage the main tunnel(NATM) which has been passed ten years after completion. In this study, we collected the laboratory test results of the concrete lining in the existing road and railway tunnels, and analyzed the correlation between compressive strength and unit mass of concrete. It is hoped that it will be used for efficient maintenance and management work of tunnels in the future.
The condition assessment of the road tunnel is based on the judgment of the responsible engineer about the expansion joint. The evaluation result is divided into the span unit or the sheet unit when calculating the evaluation result. Therefore, it was divided into span units and sheet units and the actual difference was compared.
Reinforced concrete hume pipes have been widely used as drain pipes. However, many reinforced concrete hume pipes are exposed to the deteriorated environments such as freezing-thawing damage, chemical attack and chloride ion immersion by using sea sand. The purpose of this study is to improve the durability of reinforced concrete hume pipe by using the polymer cement slurry(PCS)-coated rebar and treating the surface by polymer cement mortar(PCM). From the test results, it is apparent that PCS-coated rebar has a excellent resistance to chloride ion penetration and the PCM has good mechanical properties and durability as a lining material for reinforced concrete hume pipe product.
It is to confirm the various causes for cracks in concrete lining and understand the reasons for major cracks by analyzing on-site constructional conditions. Also, it is to identify the bahavior of concrete lining for its main cause of cracks.
대단면 터널 라이닝 콘크리트를 1일에 1cycle로 진행하기 위한 연구를 수행하였다. 터널 내부의 기후특성이 변화하고 콘크리트 타설온도가 낮은 경우에는 수화발현 속도도 지연되어 강도발현에 영향을 미치게 되므로 거푸집의 존치시간이 길어지게 된다. 이를 보완하기 위하여 갱문의 설치와 갱폼의 양쪽에 양생막을 설치한 후, 그 내부에 28±2℃의 추가적인 열원을 공급하게 되면 균열관리방안으로 제시한 관리기준 (4.5MPa) 이상의 조기강도발현을 이루어 낼 수 있었으며, 따라서 거푸집을 재령 14hr 후에 제거할 수가 있었다. 한편, 터널내 자연양생온도인 10±1℃ 조건에서는 콘크리트 타설 후 36hr 이상의 양생시간을 확보해야 되는 것으로 분석되었다. 본 연구를 통하여, 초기재령에서의 콘크리트 온도와 강도발현은 양생온도가 크게 작용하고 있음을 재확인 할 수 있었으며, 플라이애쉬가 10% 혼입된 콘크리트라도 일정시간동안 거푸집의 표면온도를 상승시켜 줄 수 있다면 조기강도발현에는 문제가 되지 않는 것으로 나타났다.
Infrastructure has been managed by precise diagnosis and repair․rehabilitation. Generally, more than 0.3mm cracks are repaired by injection method regardless of the time of repair and location of crack. In this papar, considering the feature of crack variation at three tunnels, it suggested that current diagnosis and repair methods should be improved.
Tunnel built in the late 1970 is currently being used by maintenance. For the maintenance of the tunnel, tamping materials filled backside cavity occurred during construction. In this paper, By investigating the filling state of backside cavity, It is to evaluate the filling effects of backside cavity and the adequacy of the repair and reinforcement.
산간 지형이 많은 국내 여건상 물류수송 및 교통 등을 위한 터널 구조물의 활용성은 매우 높다. 최근 현장에서는 공기단축 및 원가절감을 위하여 터널 굴착과 라이닝 콘크리트의 타설을 병행하는 공법이 진행되면서 굴착에 의한 진동 등의 영향으로 콘크리트 구조물 초기 재령에서 균열 및 내구성능 저하 문제가 발생하고 있다. 본 연구에서는 터널 라이닝용 콘크리트 배합에 있어서 보강재를 강섬유와 더불어 최근 국내에서 개발된 폴리아미드 섬유를 병행 사용한 콘크리트의 역학적 특성을 실험적으로 검토하였다. 또한 유․무기 섬유보강 터널 라이닝 콘크리트 부재의 하중-변위와 하중-변형률 관계를 모형 실험으로 평가하였다. 실험 결과, 보통 콘크리트에 강섬유와 폴리아미드 섬유 보강재를 하이브리드화하여 사용한 콘크리트 부재에서 구조 성능이 증진됨을 확인할 수 있었다.