검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 171

        21.
        2022.10 구독 인증기관·개인회원 무료
        Corrosion products generated from the oxidation of structure materials are deposited on the surface of coolant systems, forming CRUD (Corrosion Related Unidentified Deposits). The CRUD deposition on the fuel surface has influenced the heat transfer through the fuel rod. When CRUD was deposited on a fuel surface, heat resistance may increase, and this increase in heat resistance leads to the increase in temperature distribution from cladding to coolant. Also, the temperature distribution is related to the radiolytic and chemical reactions within the CRUD deposits. This influence may be enough to change the pH distribution within the CRUD deposits. To estimate the influence of thermal resistance, the composition, microstructure, and vapor fraction within the CRUD should be considered, by investigating the thermal conductivity model of CRUD deposits. Therefore, in this study, the CRUD thermal conductivity was studied through the literature study, by considering composition, capillary flow characteristics, and vapor fraction. For the uncertainty parameters, a sensitivity study was conducted to check the degree of influence on thermal conductivity. The effective thermal conductivity was applied to the radiochemistry model within the CRUD deposits and an analysis of the influence in radiolysis reaction within the CRUD deposits with a fixed thickness.
        22.
        2022.10 구독 인증기관·개인회원 무료
        The backfill refills the deep geological disposal system after the installation of buffer in the disposal hole. SKB and Posiva have established the safety function for the backfill such as hydraulic conductivity of 10-10 m/s and swelling pressure of 0.2 MPa. The study on the thermal properties is required for the evaluation of performance design and long-term stability of backfill, since the thermal condition affects the hydraulic and mechanical behavior of backfill. Thermal conductivity is a key characteristic of thermal properties due to heat dissipation from spent fuel. In this study, thermal conductivities of bentonite-sand mixed blocks were measured. The silica sands were used instead of the crushed rock with bentonil-WRK, one of the candidate bentonite of the Korean repository system. The effects of size distribution and mass ratio of sand were evaluated. Four different size of silica sand (i.e., 0.18-0.25, 0.7-1.12, 1.6-2.5, 2.5-5.0 mm) and five mixing ratio (i.e., 1:9, 2:8, 3:7, 4:6, 5:5 of bentonite and sand) were used for characterization of thermal conductivity. As a result, the thermal conductivities were measured ranging from 1.6 to 3.1 W/m∙K depending on the size and mass ratio of the sand. The smaller the size or higher the mixing ratio of sand or the higher the water contents, the higher the thermal conductivity on the surface of backfill block. The higher compressing pressure induce higher thermal conductivity. Meanwhile, the feasibility study of backfill block productivity was reviewed according to the variables of this study. The excessive sand ratio and water contents lead to poor quality that results in the failure of the block. In Korea, the research of backfill is only now in fundamental steps, thus the results of this study are expected to use for setup the experimental conditions of hydraulic and mechanical performance, and can be used for the design of safety function and evaluation of long-term stability for deep geological disposal system.
        23.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 μS/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.
        5,200원
        24.
        2022.05 구독 인증기관·개인회원 무료
        The buffer material plays a role in preventing the excessive rise in temperature generated from the high-level radioactive waste by dissipating the decay heat to the rock. For this reason, the buffer material must have thermal properties to ensure the performance of the deep geological repository. This study measured the thermal conductivity of sand-bentonite according to the mixing ratio to improve the thermal properties. The compacted buffer was manufactured with a sand-bentonite mixing ratio of 6:4, 7:3, and 8:2 with 9 to 12% water content. As a result, the thermal conductivity increases as the ratio of sand increases. As a further study, it is necessary to experiment on whether sand-bentonite’s hydraulic, mechanical, and chemical performance is suitable for the stable operation of a repository.
        25.
        2022.05 구독 인증기관·개인회원 무료
        The conventional research trend on spent fuel was safety analysis based on mechanical perspective. Analysis of spent fuel cladding is based on the temperature of cladding and pressure inside cladding. To improve fuel cladding analysis, precise and accurate thermal safety evaluation is required. In this study a database which is about thermal conductivity and emissivity for the thermal modeling was established for a long-term safety analysis of spent fuel. As a result, we confirmed that the thermal conductivity of zirconium hydride was not accounted in conventional model such as FRAPCON and MATPRO. The conductivity of zirconium and its oxide was evaluated only as a function of temperature. However, the behavior of heat conductivity and emissivity is determined by the change of the material properties. The material properties depend on the microstructural characteristic. It can be seen that this conventional approach does not consider the microstructure change behavior according to vacuum drying process or burn-up induced degradation phenomena. To improve the thermal properties of spent nuclear fuel cladding, the measurement experiments of heat conduction and emissivity are required according to spent fuel experience and status such as the number of vacuum drying, cooling rate, burn up, hydrogen concentration and oxidation degree. In previous domestic reports and papers, we found that relative data between thermal properties and spent fuel experience and status does not exist. Recently, in order to understand the failure mechanism of hydrogen embrittlement, many studies have been conducted by accounting and spent fuel experience and status in a mechanical perspective. If microstructure information could be obtained from these studies, the modeling of thermal conductivity and emissivity will be possible indirectly. According to a recent abroad paper, it was confirmed that the thermal conductivity decreased by about 30% due to irradiation damage. The radiation damage effects on thermal conductivity also has not been studied in zirconium oxide and hydride. These un-revealed phenomena will be considered for the thermal safety model of spent fuel.
        27.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, the effect of Ni (0, 0.5 and 1.0 wt%) additions on the microstructure, mechanical properties and electrical conductivity of cast and extruded Al-MM-Sb alloy is studied using field emission scanning electron microscopy, and a universal tensile testing machine. Molten aluminum alloy is maintained at 750 oC and then poured into a mold at 200 oC. Aluminum alloys are hot-extruded into a rod that is 12 mm in diameter with a reduction ratio of 39:1 at 550 oC. The addition of Ni results in the formation of Al11RE3, AlSb and Al3Ni intermetallic compounds; the area fraction of these intermetallic compounds increases with increasing Ni contents. As the amount of Ni increases, the average grain sizes of the extruded Al alloy decrease to 1359, 536, and 153 μm, and the high-angle grain boundary fractions increase to 8, 20, and 34 %. As the Ni content increases from 0 to 1.0 wt%, the electrical conductivity is not significantly different, with values from 57.4 to 57.1 % IACS.
        4,000원
        28.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A 1.8 μm thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.
        4,000원
        29.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cymbidium is one of the most popular and economically important species cultivated as a commercial ornamental crop. The objectives of this study were to determine the appropriate electrical conductivity (EC) treatments of nutrient solution, which gives the highest spike production and quality. Three-year-old Cymbidium ‘Lovely Smile’ plants were grown in the environmentally controlled Information and Communication Technology (ICT) smart greenhouse at Seoul Women’s University. The EC of the nutrient solution was changed in three distinct stages: vegetative, flower initiation, and flower development. The EC treatments were 1-0-1 (dS·m-1, EC101), 1-1-1 (dS·m-1, EC111), 2-1-2 (dS·m-1, EC212), 2-2-2 (dS·m-1, EC222), 3-2-3 (dS·m-1, EC323), 3-3-3 (dS·m-1, EC333) and the pH was adjusted to 6.0–6.5. Pseudobulb diameter increased in the plants treated with EC 101 and EC111 compared to the plants treated with EC 2.0–3.0 dS·m-1 at the reproductive stage 28 weeks after nutrient solution treatment. Flower spike production per pot and pseudobulb showed the highest values in the plants treated with EC111 of 3.3 and 1.4, respectively. Flower spikes length was the highest in the plants treated with EC 1.0 dS·m-1 and stem thickness, number of flowers, and fresh weight were the largest in the plants with EC 1.0 dS·m-1 among the EC treatments. Flower spikes had the worst quality (e.g., plant growth and flowering quality) in the plants treated with EC 3.0 dS·m-1 among the EC treatments. Floral bud and flower development took place 1–2 weeks earlier in the plants treated with EC 101, 111, and 212 than the other treatments. Flower diameter showed the highest values in the plants treated with EC 1.0 dS·m-1 among the EC treatments and flower color showed higher L* and b* values and lower a* values in the plants treated with EC 3.0 dS·m-1 compared to EC 1.0 and 2.0 dS・m-1. Nutrient solution of EC 1.0 dS·m-1 (EC111) can be recommended to improve flower spike quality and advanced flower development of Cymbidium.
        4,000원
        31.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 에너지를 실시간으로 저장할 수 있는 저장장치 중 열에너지 저장 콘크리트를 대상으로 재료의 미세구조와 물성(열전도 도)의 상관관계를 분석하는 연구를 수행하였다. 에너지 저장 콘크리트의 열전도 성능을 증가시키기 위해 혼화재인 그라파이트 (graphite)를 사용하였다. 그라파이트가 시멘트 질량의 10%와 15%를 치환한 시편과 일반 콘크리트(OPC) 시편을 제작하여 그라파이 트의 혼입에 따른 미세구조 변화 및 열전도도의 영향을 마이크로 스케일에서 분석하였다. 마이크로-CT를 활용하여 OPC와 그라파이 트를 사용한 콘크리트의 공극률을 비교하였으며, 확률함수를 사용하여 미세구조 특성을 정량화하였다. 미세구조 특성 차이가 열전도 도에 미치는 영향을 확인하기 위해 3차원 가상 시편을 제작하여 열해석을 수행하였으며, 이를 열평판법을 사용하여 측정한 열전도도 실험 결과와 비교하였다. 열해석 수행 시 그라파이트 재료가 지닌 열전도도 성능을 반영하기 위하여 해석 결과와 실험 결과를 기반으 로 고체상의 열전도도를 역해석을 통해 계산하였으며, 그라파이트가 시편의 열전도도에 미치는 영향에 대해 분석하였다.
        4,000원
        32.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, pyrolyzed fuel oil (PFO)-based pitch without impurities was used to prepare coke under pressure, and the preparation yield and the powder resistance depending on the graphitization were investigated. The preparation yield of green coke by pressurized coking at 500 °C was about 26–27% higher than that at normal pressure. However, the coke yield after the thermal treatment of green coke at 900 °C was lower by 10.6–14.8% at the pressurization conditions than under normal pressure. This may be because the substances that are not vaporized under the pressurized conditions remain in the reactants and then are discharged later. The coke yield after the thermal treatment at 900 °C was higher by 14.9–28.3% under the pressurized conditions than under the normal pressure, indicating that the low-boiling point materials of the pitch participated more in coke polymerization under the pressurized conditions. The density of the coke prepared under the pressurized conditions was lower than that of the coke prepared under normal pressure, because the low-boiling point materials of the pitch participated in the reaction. However, after graphitization, the density values became similar (2.27–2.26 g/cm3). The volume resistivity of the graphitized samples was in a range of 0.499 × 10–2–0.384 × 10–2 Ω cm, indicating that the coke samples have similar electrical properties. The results of the present study show that, in comparison with the conventional normal-pressure process, the pressurized coking process can improve the yield through the participation of low-boiling point materials in the polymerization reaction, while maintaining the properties of the prepared coke and graphite, such as the conductivity and density.
        4,000원
        34.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Extensive studies have been conducted on thermal conductivity of bentonite buffer materials, as it affects the safety performance of barriers engineered to contain high-level radioactive waste. Bentonite is composed of several minerals, and studies have shown that the difference in the thermal conductivity of bentonites is due to the variation in their mineral composition. However, the specific reasons contributing to the difference, especially with regard to the thermal conductivity of bentonites with similar mineral composition, have not been elucidated. Therefore, in this study, bentonites with significantly different thermal conductivities, but of similar mineral compositions, are investigated. Most bentonites contain more than 60% of montmorillonite. Therefore, it is believed that the exchangeable cations of montmorillonite could affect the thermal conductivity of bentonites. The effect of bentonite type was comparatively analyzed and was verified through the effective medium model for thermal conductivity. Our results show that Ca-type bentonites have a higher thermal conductivity than Na-type bentonites.
        4,000원
        35.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene fiber is considered as a potential material for wearable applications owing to its lightness, flexibility, and high electrical conductivity. After the graphene oxide (GO) solution in the liquid crystal state is assembled into GO fiber through wet spinning, the reduced graphene oxide (rGO) fiber is obtained through a reduction process. In order to further improve the electrical conductivity, herein, we report N, P, and S doped rGO fibers through a facile vacuum diffusion process. The precursors of heteroatoms such as melamine, red phosphorus, and sulfur powders were used through a vacuum diffusion process. The resulting N, P, and S doped rGO fibers with atomic% of 6.52, 4.43 and 2.06% achieved the higher electrical conductivities compared to that of rGO fiber while preserving the fibrious morphology. In particular, N doped rGO fiber achieved the highest conductivity of 1.11 × 104 S m−1, which is 2.44 times greater than that of pristine rGO fiber. The heteroatom doping of rGO fiber through a vacuum diffusion process is facile to improve the electrical conductivity while maintaining the original structure.
        4,000원
        39.
        2021.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수경재배시 양액 내 탄산정 처리를 통한 상추의 생육 및 생 리활성물질 변화를 조사하기 위해 네덜란드에서 시판되는 고 형 탄산정을 사용하였다. 실험은 무처리를 대조구로 하여 0.5 배, 1배, 2배 처리구로 구성하였다. 실험결과, 탄산정 처리 후 챔 버내 대기 CO2 농도는 처리 직후 2배 처리구에서 472.2μL·L -1 로 가장 높은 수치를 보였으며, 양액내 pH는 2배 처리구는 pH 6.03로 가장 많이 감소하였다. 이후 시간이 경과함에 따라 CO2 농도와 pH는 처리 전 수준으로 회복하는 모습을 나타냈 다. 상추의 엽폭과 엽면적은 탄산정 2배 처리시 17.1cm, 1067cm 2로 가장 큰 값을 나타내었으며 지상부 생체중, 건물 중은 0.5배 처리구에서 63.87g, 3.08g으로 가장 높게 나타났 다. 상추의 근장은 대조구에서 28.4cm로 가장 길었으나 처리 구들간에 지하부의 생체중, 건물중은 유의적인 차이를 나타 내지 않았다. 외관상 탄산정 처리에 의해 상추의 근장이 짧아 지고 곁뿌리가 많이 발생한 것이 관찰되었다. 또한 뿌리가 갈 색으로 약간 변하는 결과가 있었지만, 지상부 생육에는 부정 적인 영향을 미치지 않은 것으로 나타났다. 탄산정 처리에 의 한 상추의 생리활성물질을 분석한 결과 chlorogenic acid와 quercetin 두가지 물질이 검출되었으며 이를 정량분석한 결과 1배 처리구에서 chlrogenic acid는 대조구보다 249% 증가하 였지만 quercetin은 37% 감소한 결과를 나타냈다. 항산화 활 성을 나타내는 DPPH 라디컬 소거능을 비교한 결과 대조구와 0.5배 처리가 1배, 2배 처리보다 유의적으로 높은 값을 나타냈 다. 이를 통해 탄산정 처리가 수경재배 상추의 생육과 생리활 성물질을 증대에 효과가 있음을 제시한다.
        4,000원
        40.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the thermal shock and ablation resistance of high thermal conductivity carbon/carbon composites, carbon nanotubes (CNTs) were introduced by electrophoretic deposition. After modification, the flexural strength of the composites increases by 53.0% due to the greatly strengthened interfaces. During thermal shock between 1100 °C and room temperature for 30 times, the strength continues to increase, attributed to the weakened interfaces in favor of fiber and CNT pull-out. By introducing CNTs at interfaces, thermal conductivity of the composites along the fiber axial direction decreases and that along the fiber radial direction increases. As the thermal shock process prolongs, since the carbon structure integrity of CNT and matrix in the modified composites is improved, the conductivity increases whatever the orientation is, until the thermal stress causes too many defects. As for the anti-ablation performance, the mass ablation rates of the CNT-modified composites with fibers parallel to and vertical to the flame decrease by 69.6% and 43.9% respectively, and the difference in the mass ablation rate related with fiber orientations becomes much less. Such performance improvement could be ascribed to the reduced oxidative damage and the enhanced interfaces.
        4,500원
        1 2 3 4 5