A study on the denitrification of reverse osmosis(RO) concentrated wastewater from sewage reuse treatment plant in P city was conducted using waste desulfurization agent obtained from desulfurization process. Sulfur-based autotrophic denitrifying carrier comprises the predetermined amount of waste iron sulfide (FeS, Fe2S3), mine drainage sludge and elemental sulfur showing mesoporisity with 9.9 nm (99 Å) of average pore size. Sulfur denitrifying bacteria and sulfur reducing bacteria were implanted into the pores of sulfur denitrifying carrier. Nitrate was not affected by empty bed contact time (EBCT). It is probably due to larger reducing capacity of the carrier than the concentration of nitrate in RO concentrated wastewater. Total nitrogen (T-N) removal efficiency exhibited about 90% after 4 days. Sulfate ion was surprisingly decreased with sulfur autotropic process due to the reduction of sulfate ion to HS- and S2- by sulfur reducing bacteria. Sulfide and hydrogen sulfide ions were then taken by Fe(OH)3, main component of mine drainage sludge, releasing OH-. Alkalinity was therefore maintained between 7.5 and 8.5 in pH by the released OH-. Also, it had the effect of suppressing the production of H2S, which causes bad odor.
Wastewater treatment using ferrate (Ⅵ) solution is becoming a promising technology for several years, because it is high efficient and harmless technology. In this study, the ferrate (Ⅵ) solution was tested to treatment of desulfurization wastewater. The effluent from desulfurization wastewater treatment process of power plant was used as raw water, and the COD and T-N removal efficiency of ferrate(Ⅵ) solution were investigated. In the test, as the injection rate increased from 0.1 to 1.0%, the removal efficiency of COD also slightly increased, about 80% of COD were removed in 1.0% of injection rate. In the case of T-N, about 50% of T-N was removed in the condition of 1.0% of injection rate. The removal efficiency of COD and T-N also affected by reaction time,maximum removal efficiency was shown in 30 min of treatment. From these results, the wastewater treatment with ferrate(Ⅵ) solution can be great solutions for treatment of non-biodegradable pollutants in wastewater, especially for the 3rd treatment of wastewater.
The objective of this study is to investigate partial oxidation of NO with desulfurization in dry sorbent injection(DSI) process using dry sorbent and additives. The effect of the main operating variables directly related to desulfurization efficiency has been also tested. These variables are Ca/S ratio, temperature, inlet SO2 concentration and gas flow rate. The experiment was carried out for partial oxidation of NO with desulfurization in dry sorbent injection process using NaClO2 and CaCl2. The experimental results showed that partial oxidation of NO with desulfurization was increased in DSI process using little NaClO2. It was also found that the injection of CaCl2 was effective in increasing only SO2 removal efficiency. Increase of SO2 removal performance and promotion of partial oxidation of NO using the two additives at low temperature was confirmed.
Sulfur content of diesel fuel has been cut down to under 10 ppm ULSD (ultra low sulfur diesel) level by environmental regulation with the aim of reducing exhaust emissions. This review discusses the methods and principles of sulfur reduction in diesel and presents an overview of new approaches for ultra-deep desulfurization. The deep HDS (hydrodesulfurization) problems of diesel streams is exacerbated by the inhibiting effect of co-existing aromatics, nitrogen compounds and H₂S. The new approaches to deep desulfurization includes non-HDS type processing schemes such as adsorptive, extractive and oxidative desulfurization.
In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.
Gordona sp. MS6, desulfurizing petroleum, can convert dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP) and sulfate. In this study, the effect of DBT degradation product on DBT desulfurization activity was investigated. When SO and DBT were simultaneous
기후변화의 원인으로는 온실가스의 과량 배출이 문제화 되는 현 시점에서 온실가스 중 가장 많은 양을 차지하는 이산화탄소의 경우 기후변화에 미치는 영향이 다른 종류의 온실가스보다 크다는 것은 널리 알려진 사실이다. 여러 분야의 산업과 인간 활동에서 발생하는 이산화탄소를 KOH 흡수제를 통해 흡수된 CO2양을 측정하고 발전소 탈황 공정에서 발생하는 ASH를 첨가하여 반응시켜 생성된 CaCO3를 다른 유용한 물질로 전환하여 자원화하고 재사용하는 것이다. 본 연구에서는 KOH 흡수제 농도에 따른 CO2 흡수량 측정과 KOH 흡수제와 흡수첨가제(piperazine)을 함께 넣고 흡수된 CO2양을 측정하였다. 또한, CO2 loading curve 이용하여 CO2 흡수량을 계산하였으며, 화력발전소의 탈황공정에서 발생하는 ASH와 CO2가 흡수된 KOH를 수용액과 반응시켜 생성된 시간당 CaCO3의 양을 측정하고 분석기기 XRD(X-Ray Diffraction)와 SEM(Scanning Electron Microscope)을 사용하여 결정 구조와 표면 구조를 분석하였다.
가축분뇨, 하수슬러지, 음식물류폐기물 등의 유기성폐자원을 이용한 바이오가스의 생산은 기존에 버려지고 있던 유기성폐기물을 에너지화 할 수 있을 뿐만 아니라 동시에 온실가스를 감축할 수 있다는 점에서 각광받고 있다. 혐기성 소화조에서 발생하는 바이오가스에는 메탄(CH4)이 60~65%정도를 이루고 이산화탄소(CO2)가 30~35%이며, 미량 가스로 황화수소(H2S), 수분(Vapor) 등이 포함되어 있다. 바이오가스 중에 미량 존재하는 황화수소는 그 유독성이 매우 심하고, 촉매의 활성과 바이오가스의 이용효율을 저하시키며, 배관재질과 반응하여 설비를 부식시키고 연소 후에는 SO2로 산화하여 산성비의 원인 물질로 배출되어 대기 환경을 오염시키는 역할을 하고 있어 그 제거가 필수적이라 할 수 있다. 바이오가스 중에 황화수소 가스는 메탄발효 원료 중에 포함되어 있는 단백질과 아미노산을 구성하는 황과 황산염을 환원하는 황환원세균 등에 의하여 생성하는 유해가스이다. 따라서 원료 물질의 구성에 따라 황화수소의 농도가 달라지며, 황 함유량이 높은 하수슬러지를 이용한 바이오가스 생산설비에서는 황화수소 농도가 2,000 ppm을 상회한다. 이러한 황화수소를 제거하기 위한 정제방법으로는 습식, 건식, 생물이용 등으로 나누어지고 있으며, 처리 가스량, 유지관리비, 탈황 목표치 등을 감안하여 각각의 적정 방법을 선택하여 적용하고 있다. 이러한 황화수소의 거동을 파악하여 바이오가스 생산 및 이용 효율성을 증대시키고자, 국내 바이오가스 플랜트의 탈황설비를 중심으로 정밀 모니터링을 실시하였다.
우리나라의 경우 1990년대부터 환경오염문제의 사회화가 배경이 되어 환경에 대한 관심이 높아짐에 따라 1998년부터 배기가스의 탈황공정이 가동되어 화학석고가 발생하기 시작하였는데 이것이 화력발전소에서 부산물로 나오는 배연탈황석고이다. 국내의 석탄화력 발전소에 설치된 탈황설비는 흡착재로 석회석 분말을 사용하고 부산물로 석고를 생성하는 습식공정으로서, 배연탈황석고는 이수석고(CaSO4⋅2H2O)로 생성되는데, 인산석고와 비교할 때 pH가 중성이며 높은 순도의 균일한 품질을 가지고 있어 발생 전량이 시멘트 및 석고보드 원료로서 재활용되고 있다. 한편 최근 그 수요가 증가하는 고강도콘크리트 혼화재, 슬래그 시멘트에 사용하기 위하여 년간 30만톤 이상 수입되고 있는 천연무수석고는 우리나라에 광물로 부존하지 않는다. 선진국과 마찬가지로 배연탈황 석고가 전량 수입되고 있는 천연석고를 대체할 수 있다는 장점에 대하여 충분히 인식함에도 불구하고, 아직까지 전반적인 기술 기반의 취약성 및 인력 부족으로 석고보드 제조 등 초보적인 수준에 머물러 있으나 최근 콘크리트 혼화재료 제조기업은 중국의 값싼 제품으로 인해 가격 경쟁력을 상실하고 있어 미래 경쟁력 있는 분야로의 전환을 위해 배연탈황 석고를 이용한 고부가성 건설재료 제조 기술에 관심을 가지기 시작하고 있다. 이에 본 연구에서는 지속가능 친환경-고성능 건설용 복합재료의 생산 및 이의 활용 기술을 적극적으로 개발하고자 인공신경망 모델을 활용한 배연탈황석고 모르타르의 배합조건과 물리적 결과값의 데이터를 다양한 알고리즘에 적용하여 이의 분석과 예측의 정확성을 판별하여 기초데이터로 제공하고자 한다.
산성광산배수(acid mine drainage, AMD)는 가행탄광 또는 폐광지에서 지속적으로 수질 및 토양 환경오염을 일으키는 오염원이다. 산성광산배수를 무해화 하기 위한 많은 공법들이 연구되고 개발되었다. 산성광산배수는 대기 중에 노출된 황철석(FeS2), 백철석(FeS) 등의 황화광물이 산소 및 물과 반응하여 산화되면서 형성되며, pH가 낮아 산성을 띠고 있으며, 황산염을 비롯한 철, 알루미늄, 망간 등 금속함량이 높은 것이 특징이다. 산성광산배수의 처리방법은 크게 적극적 처리법(active treatment)과 소극적 처리법(passive treatment)으로 나누어진다. 적극적 처리법은 중화제를 이용한 pH 조절, 이온교환과 흡착, 응집, 여과 등의 방식을 이용하는 방법으로서, 대표적인 적극적 처리법으로는 역삼투압법, 이온교환법, 전기투석법 등이 있다. 소극적 처리법은 유기물과 석회석 등을 이용하여 동력을 투여하지 않는 방식으로 대표적인 소극적 처리법으로는 SAPS (successive alkalinity-producing systems) 등이 있다. 특히, 소석회(Ca(OH)2)를 이용하여 산성광산배수를 중화시켜 산성광산배수에 포함된 금속들을 슬러지로 침전시켜 시멘트 회사 등으로 운송되어 폐기물로 처리하고 있다. 본 연구에서는 산성광산배수에서 폐기물로 처리되는 산성광산 슬러지를 바이오가스 정제 분야 등에 이용할 수 있는 흡착제를 제조하여 폐기되는 슬러지의 배출량을 절감시키는 기술을 적용하여 바이오가스 산업에 경쟁력을 부여하기 위한 결과를 얻었다.
The desulfurization of untreated petroleum oil is required in order to comply with stringent environmental regulations. Ultrasound-assisted oxidative desulfurization (UAOD) is an innovative technology for sulfur removal in order to avoid the environmental hazards associated with the combustion of sulfur compounds in raw diesel oil. In this study, diesel oil is treated through UAOD. The effects of ultrasound time (6-30 min), amplitude (20-60%), phase transfer agent (100-500mg), catalyst dosage (10-500mg), H2O2 concentration (30-50%v/v), organic to aqueous phase (OP:AP) ratio (50:50-90:10) and reaction temperature (30-70℃) were examined. The screening analysis used is the definitive screening design that statistically determines the parameters that have a significant effect on the oxidation of diesel oil. Results indicate that significant factors (p-value < 0.5) where ultrasound time, amplitude, catalyst dosage and reaction temperature; while the phase transfer agent, H2O2 concentration and OP:AP ratio were insignificant (p-value > 0.5) on the response of sulfur conversion in the untreated diesel oil. This study concludes that the essential factors to achieve deep desulfurization in diesel oil include ultrasound time, amplitude, H2O2 concentration and reaction temperature which are key factors in the oxidation of sulfur compounds to achieve low sulfur containing diesel oil.
The re-emission of mercury (Hg), as a consequence of the formation and dissociation of the unstable complex HgSO3, is a problem encountered in flue gas desulphurization (FGD) treatment in coal-fired power plants. A model following a pseudo-second-order rate law for Hg2+ reduction was derived as a function of [SO32-], [H+] and temperature and fitted with experimentally obtained data to generate kinetic rate values of (0.120 ± 0.04, 0.847 ± 0.07, 1.35 ± 0.4) mM-1 for 40°, 60°, and 75℃, respectively. The reduction of Hg2+ increases with a temperature increase but shows an inverse relationship with proton concentration. Plotting the model-fitted kinetic rate constants yields ΔH = 61.7 ± 1.82 kJ mol-1, which is in good agreement with literature values for the formation of Hg0 by SO32-. The model could be used to better understand the overall Hg2+ re-emission by SO32- happening in aquatic systems such as FGD wastewaters.
In this study, the recycling water that produced during remicon manufacturing was activated by desulfurization gypsum, and then mortar with activated-sludge was made. As a result, possibility of activated-sludge in remicon was verified via flow and compressive strength test.
Among many types of flue gas desulfurization (FGD) facilities, wet type FGD using lime or limestone is most popular in the world because of its simplicity of operation and availability of lime and limestone. Seawater desulfurization utilizes the alkalinity of seawater, thus requires no addition of lime and limestone. The efficiency of seawater desulfurization depends on the variation of alkalinity of seawater at different locations. This study presents the effect of gas-water ratio and total alkalinity of absorbing solution on the removal efficiency of sulfur dioxide from the flue gas by means of seawater. Also this study provides an alternative way to increase total alkalinity of seawater by utilizing fly ash from coal-fired power plants. The increase of removal efficiency with increase of alkalinity was measured as 0.26 ± 0.01% per ppm of bicarbonate alkalinity from the set of experiments using seawater, underwater, and distilled water, the alkalinity of which were 111 ppm, 38 ppm, and 1 ppm, respectively. Capability to increase total alkalinity of seawater using fly ash was confirmed.
This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.
The objectives of this study were to investigate the desulfurization kinetics of paper sludge and limestone in a fluidized bed reactor according to bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the desulfurization efficiency of limestone and paper sludge. In paper sludge, the optimum condition in desulfurization temperature was at 800℃ and in limestone, that was at 850℃ or 900℃. Second, as air velocity increased, the desulfurization efficiency(or the absorbed amount of sulfur dioxide) by limestone and paper sludge decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by limestone. Third, as the velocity increased and the optimum desulfurization temperature became, ks and the removal efficiency increased. So, ks, kd highly depended on the air velocity and bed temperature.
We tried to develope a desulfurization sorbent using eggshell for recycling, practicability, and economic development. The calcination character of the eggshell was examined by thermal gravimetric analysis and qualitative-quantitative character by X-ray diffractometer(XRD) and scanning electron microscope(SEM). The calcination was occurred easily in the case of eggshell and its form was changed from calcite(CaCO_3) to lime(CaO). The grain and pore sizes of the calcined sample after base-treatment were larger and more crystallic. The adsorption ability of the eggshell was two- to six-times in the calcination temperature more than in the grain size. Therefore, the eggshell was thought to be usable as the desulfurization sorbent.