검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 567

        21.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metals had been significantly substituted by synthetic polymers in most of our daily requirements, thus relaxing our life. Out of many applied areas, synthetic polymers especially conducting polymers had shown their marked effect and potential. Batteries, pseudocapacitors, superconductors, etc. are the potential zones where conducting polymers are chiefly employed owing to their appreciable conductivity, cost efficiency, and corrosion inhibition nature. Apart from energy storage devices, these conducting polymers find their potential application in biosensors, lasers, corrosion inhibitors, electrostatic materials, conducting adhesives, electromagnetic interference shielding, and others. These all applications including energy storage are due to astonishing properties like high conductivity, flexibility, tuneability, easy processibility, chemical, thermal and mechanical stability, easy and enhanced charge transportation, lightweight, etc. Conducting polymers are extensively studied for their application in energy storage batteries, for which the material under investigation needs to be electrically conductive. However, the conducting nature of these specific conducting polymers is dependent on numerous factors. This review discussed the effect of certain potential factors such as polymerization techniques temperature, doping, bandgap, extended conjugation, solvent, etc. on the electrical/electrochemical conductivity of these conducting polymers. These all factors with their specific variations are found to have a noticeable consequence on the electrical conductivity of the investigated conducting polymer and hence on the energy storage carried by them. This review could be proved beneficial to the readers, who can judiciously implement the conclusions to their research related to conducting polymers and their composites for generating highly efficient energy storage systems.
        5,200원
        22.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0–64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.
        5,100원
        23.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a graphite block is fabricated using artificial graphite processing byproduct and phenolic resin as raw materials. Mechanical and electrical property changes are confirmed due to the preforming method. After fabricating preforms at 50, 100, and 150 MPa, CIP molding at 150 MPa is followed by heat treatment to prepare a graphite block. 150UP-CIP shows a 12.9% reduction in porosity compared with the 150 MPa preform. As the porosity is decreased, the bulk density, flexural strength, and shore hardness are increased by 14.9%, 102.4%, and 13.7%, respectively; and the deviation of density and electrical resistivity are decreased by 51.9% and 34.1%, respectively. Therefore, as the preforming pressure increases, the porosity decreases, and the electrical and mechanical properties improve.
        4,000원
        24.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전기 설비는 원자력 발전소와 같은 발전소에서 발전 시스템을 운영하고 시설물 전체의 안전을 유지하는데 중요한 역 할을 한다. 이러한 전기 설비들은 캐비닛 내부에 설치되어 외부의 위험으로부터 보호된다. 캐비닛 자체 구조와 내부의 전기 장 치들의 내진검증은 발전소의 안전한 운영을 위해 필수적이다. 부분 전기 캐비닛의 내진검증 연구들은 진동대 시험에 의존하여 진행되고 있다. 그러나 시험을 기반으로 한 내진검증의 경우 다양한 종류의 전기 캐비닛의 특성을 포함하기에는 한계가 있다. 이러한 문제는 상세 3D 유한요소 모델을 통한 내진 검증평가는 진동대 시험으로 인한 비용 및 시간을 절약할 수 있고 다양한 형태 및 위치의 전기설비 설치에 따른 내부의 응답 민감성을 확인해 볼 수 있다. 본 연구에서는 단문형 전기 캐비닛의 내진응 답에 대한 연구를 실시하였다. 먼저 진동대 시험으로 얻은 모달해석 결과를 바탕으로 ABAQUS software를 통해 구축된 3D 상세 유한요소 모델을 검증하였다. 그리고 캐비닛 내부의 다양한 기기 설치를 모사하기 위해 캐비닛 하부 및 상부 위치에 캐비닛 총 무게의 2%, 4%, 6%의 질량을 유한요소 모델에 추가하였다. 또한 2개의 고주파 지진과 2개의 저주파 지진을 입력 지진으로 선 정하여 캐비닛 내부 기기의 질량 변화에 따른 캐비닛 내부와 외부의 가속도 응답 변화를 분석하였다.
        4,000원
        25.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electromembrane process, which has advantages such as scalability, sustainability, and eco-friendliness, is used in renewable energy fields such as fuel cells and reverse electrodialysis power generation. Most of the research to visualize the internal flow in the electromembrane process has mainly been conducted on heterogeneous ion exchange membranes, because of the non-uniform swelling characteristics of the homogeneous membrane. In this study, we successfully visualize the electroconvective vortices near the Nafion homogeneous membrane in PDMS-based microfluidic devices. To reinforce the mechanical rigidity and minimize the non-uniform swelling characteristics of the homogeneous membrane, a newly developed swelling supporter was additionally adapted to the Nafion membrane. Thus, a clear image of electroconvective vortices near the Nafion membrane could be obtained and visualized. As a result, we observed that the heterogeneous membrane has relatively stronger electroconvective vortices compared to the Nafion homogeneous membranes. Regarding electrical response, the Nafion membrane has a higher limiting current and less overlimiting current compared to the heterogeneous membrane. Based on our visualization, it is assumed that the heterogeneous membrane has more activated electroconvective vortices, which lower electrical resistance in the overlimiting current regime. We anticipate that this work can contribute to the fundamental understanding of the ion transport characteristics depending on the homogeneity of ion exchange membranes.
        4,000원
        26.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The evolvement in the microstructure and electrical properties of PAN-based carbon fibers during high-temperature carbonization were investigated. The study showed that as the heat treatment temperature increases, the change of carbon fiber resistivity around 1100 °C can be divided into two stages. In the first stage, the carbon content of the fiber increased rapidly, and small molecules such as nitrogen were gradually released to form a turbostratic of carbon crystal structure. The resistivity dropped rapidly from 3.19 × 10− 5 Ω·m to 2.12 × 10− 5 Ω·m. In the second stage, the carbon microcrystalline structure gradually became regular, and the electron movement area gradually became larger. At this time, the resistivity further decreases, from 2.12 × 10− 5 Ω·m to 1.59 × 10− 5 Ω·m. During carbonization, the tensile strength of carbon fiber first increased and then decreased. This is because the irregular and disordered graphite structure is formed first. As the temperature rose, the graphite layer spacing decreased and the grain thickness gradually increases. The modulus also gradually increased.
        4,000원
        27.
        2022.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Neuromuscular electrical stimulation (NMES) is used for muscle strengthening. While voluntary muscle contraction follows Henneman et al.’s size principle, the NMES-induced muscle training disrespects the neurophysiology, which may lead to unwanted changes (i.e., declined balance ability). Objects: We examined how the balance was affected by abdominal muscle training with the NMES. Methods: Fifteen young adults (10 males and 5 females) aged between 21 and 30 received abdominal muscle strengthening with NMES for 23 minutes. Before and after the training, participants’ balance was measured through one leg standing on a force plate with eyes open or closed. Outcome variables included mean distance (MDIST), root mean square distance (RDIST), total excursion (TOTEX), mean velocity (MVELO), and 95% confidence circle area (AREA) of center of pressure data. Two-way repeated measures analysis of variance was used to test if these outcome variables were associated with time (pre and post) and vision. Results: All outcome variables were not associated with time (p > 0.05). However, all outcome variables were associated with vision (p = 0.0001), and MVELO and TOTEX were 52.4% (45.5 mm/s versus 95.6 mm/s) and 52.4% (364.1 mm versus 764.5 mm) smaller, respectively, in eyes open than eyes closed (F = 55.8, p = 0.0005; F = 55.8, p = 0.0005). Furthermore, there was no interaction between time and vision (F = 0.024, p = 0.877). Conclusion: Despite the different neurophysiology of muscle contraction, abdominal muscle strengthening with NMES did not affect balance.
        4,000원
        29.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식물의 생장과 발달은 지하부 환경에도 영향을 받으므로 근 권 환경의 변수들을 관수전략의 수립에 고려하는 것이 매우 중요하다. 본 연구의 목적은 수분이동 특성이 다른 2종류의 암 면배지에서 FDR센서를 활용하여 체적함수율(VWC)과 Bulk EC(ECb) 그리고 식물의 뿌리가 이용하는 Pore EC(ECp)에 대한 관계를 분석하고, 이를 활용하여 이용가능한 근권 환경 데이터 수집과 보정 방법을 확립하고자 진행되었다. 실험은 물리적 특성이 다른 2종류의 암면배지(RW1, RW2)를 사용 하였다. FDR 센서를 활용하여 함수율(MC)과 ECb를 측정하 였으며, ECp는 체적함수율(VWC) 10-100%에서 배지 중 앙부위에 일회용 주사기를 이용하여 배지 잔류 양액을 추출 후 측정하였다. 이후 2종류 배지(RW1, RW2)에 서로 다른 농 도(증류수, 0.5-5.0)의 배양액을 각 체적함수율 범위(0- 100%)로 공급하여 ECb와 ECp를 측정하였다. RW1, RW2 배지에서 ECb와 ECp의 관계는 3차 다항식에 가장 적합하였 다. 체적함수율(VWC) 범위 3차 다항식에 따른 ECb와 ECp 의 관계는 낮은 체적함수율(VWC) 10-60% 구간에서 큰 오 차율을 보였다. 체적함수율(VWC)범위에 따른 센서 측정값 (ECb) 및 식물 뿌리가 이용하는(ECp)의 상관관계는 2종류 배 지(RW1, RW2) 모두 Paraboloid 식에서 결정계수값이 각각 0.936, 0.947로 가장 높았다.
        4,000원
        30.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        사물인터넷(IoT) 기술을 활용한 전력 사용량 모니터링은 스마트팜 운영비 절감 기술 개발을 위한 기초자료로 필요성이 부각되고 있다. 본 연구에서는 멜론 생산 스마트팜 운영 중 실시간 전력사용량 모니터링 시스템을 설치한 예를 소개하고 이 를 이용하여 수집된 데이터를 실시간으로 활용하는 방법을 제 안한다. 전력사용량 모니터링 시스템의 실증을 위하여 멜론 스마트팜에서 3개월의 멜론 재배기간 동안 보일러, 양분분배 시스템, 자동제어기, 순환팬, 보일러제어기, 기타 IoT 관련 유 틸리티 등 스마트팜 시설에서 사용하는 개별 전원 기구들의 전력사용량 데이터를 수집하였다. 모니터링 결과를 이용하여 전기에너지 소비패턴의 예시를 분석하고, 측정 데이터를 최 적으로 활용하기 위해 필요한 고려사항을 제시하였다. 본 논 문은 전력사용량 모니터링 시스템을 새로이 구축하고자 하는 유저들에게 기술적 진입장벽을 낮추고 생성된 데이터 활용 시 시행착오를 줄이는 데 유용한 자료가 될 것으로 사료된다.
        4,000원
        31.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The transcutaneous electrical nerve stimulation (TNES) is the most used non-invasive treatment method in physical therapy. As the mobile TENS (MTENS) has become popular, patients with pain have started using MTENS to reduce pain. Objectives: To evaluate pain, range of motion, and muscle strength before and after using MTNES in patients with wrist pain. Design: Quasi-experimental research. Methods: We conducted an experiment with 80 patients; 15 patients were dropped out, and 35 and 30 patients were evaluated in the experimental group (EG) and control group (CG), respectively. Before and after using MTENS for 4 weeks, patients were evaluated using visual analogue scale (VAS), grip power, range of motion (ROM), and digital infrared thermography imaging (DITI). In the EG, electricity was applied for the MTENS device, while electricity was not applied in the CG. Results: A significant difference in pain reduction was observed between the EG and CG. In the EG, a significant difference in grip strength was also noticed before and after using the MTENS; patients showed significantly increased power grip and tip pinch. A significant difference was observed in pre-rest and post-test wrist ROM and DITI values. Conclusion: MTENS is an appropriate procedure for patients with wrist pain.
        4,000원
        32.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A spin coating process for RRAM, which is a TiN/TiO2/FTO structure based on a PTC sol solution, was developed in this laboratory, a method which enables low-temperature and eco-friendly manufacturing. The RRAM corresponds to an OxRAM that operates through the formation and extinction of conductive filaments. Heat treatment was selected as a method of controlling oxygen vacancy (VO), a major factor of the conductive filament. It was carried out at 100 oC under moisture removal conditions and at 300 oC and 500 oC for excellent phase stability. XRD analysis confirmed the anatase phase in the thin film increased as the heat treatment increased, and the Ti3+ and OH- groups were observed to decrease in the XPS analysis. In the I-V analysis, the device at 100 oC showed a low primary SET voltage of 5.1 V and a high ON/OFF ratio of 104. The double-logarithmic plot of the I-V curve confirmed the device at 100 oC required a low operating voltage. As a result, the 100 oC heat treatment conditions were suitable for the low voltage driving and high ON/OFF ratio of TiN/TiO2/FTO RRAM devices and these results suggest that the operating voltage and ON/OFF ratio required for OxRAM devices used in various fields under specific heat treatment conditions can be compromised.
        4,000원
        33.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.
        4,800원
        34.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 μS/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.
        5,200원
        35.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Neuromuscular electrical stimulation (NMES) is a physical modality used to activate skeletal muscles for strengthening. While voluntary muscle contraction (VMC) follows the progressive recruitment of motor units in order of size from small to large, NMES-induced muscle contraction occurs in a nonselective and synchronous pattern. Therefore, the outcome of muscle strengthening training using NMES-induced versus voluntary contraction might be different, which might affect balance performance. Objects: We examined how the NMES training affected balance and proprioception. Methods: Forty-four young adults were randomly assigned to NMES and VMC group. All participants performed one-leg standing on a force plate and sat on the Biodex (Biodex R Corp.) to measure balance and ankle proprioception, respectively. All measures were conducted before and after a training session. In NMES group, electric pads were placed on the tibialis anterior, gastrocnemius, and soleus muscles for 20 minutes. In VMC group, co-contraction of the three muscles was conducted. Outcome variables included mean distance, root mean square distance, total excursion, mean velocity, 95% confidence circle area acquired from the center of pressure data, and absolute error of dorsi/plantarflexion. Results: None of outcome variables were associated with group (p > 0.35). However, all but plantarflexion error was associated with time (p < 0.02), and the area and mean velocity were 37.0% and 18.6% lower in post than pre in NMES group, respectively, and 48.9% and 16.7% lower in post than pre in VMC group, respectively. Conclusion: Despite different physiology underlying the NMES-induced versus VMC, both training methods improved balance and ankle joint proprioception.
        4,000원
        36.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acrylonitrile–butadiene–styrene (ABS) terpolymer was compounded with short carbon fiber (CF) and carbon nanotube (CNT) using a micro-extruder followed by the injection molding process. Composite samples were fabricated with loading ratios of 20 wt.% CF and 0.1, 0.5 and 1.0 wt.% of CNT. Mechanical, electrical, thermo-mechanical, thermal, melt-flow, and structural investigations of ABS-based composites were conducted by performing tensile, impact, hardness, and wear tests, conductive atomic force microscopy (AFM), dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA), melt flow rate test (MFR), scanning electron microscopy (SEM) characterization techniques, respectively. According to mechanical test data of resultant composites including tensile and impact test findings, CNT additions led to the remarkable increase in tensile strength and impact resistance for CF reinforced ABS composites. The formation of synergy between CNT nanoparticles and CF was confirmed by electrical conduction results. The conductive path in ABS/CF composite system was achieved by the incorporation of CNT with different loading levels. SEM micrographs of composites proved that CNT nanoparticles exhibited homogeneous dispersion into ABS matrix for lower loadings.
        4,300원
        37.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The superimposed technique (ST) involves the application of electrical muscle stimulation (EMS) during voluntary muscle action. The physiological effects attributed to each stimulus may be accumulated by the ST. Although various EMS devices for the quadriceps muscle are being marketed to the general public, there is still a lack of research on whether ST training can provide significant advantages for improving quadriceps muscle strength or thickness compared with EMS alone. Objective: To compare the effects of eight weeks of ST and EMS on the thicknesses of the rectus femoris (RF) and vastus intermedius (VI) muscles and knee extension strength. Methods: Thirty healthy subjects were recruited and randomly assigned to either the ST or EMS groups. The participants underwent ST or EMS training for eight weeks. In all participants, the thicknesses of the RF and VI muscles were measured before and after the 8-week intervention by ultrasonography, and quadriceps muscle strength was measured using the Smart KEMA tension sensor (KOREATECH Co., Ltd.). Results: There were significant differences in the pre- and post-intervention thicknesses of the RF and VI muscles as well as the quadriceps muscle strength in both groups (p < 0.05). RF thickness was significantly greater in the ST group (F = 4.294, p = 0.048), but there was no significant difference in VI thickness (F = 0.234, p = 0.632) or knee extension strength (F = 0.775, p = 0.386). Conclusion: EMS can be used to improve quadriceps muscle strength and RF and VI muscle thickness, and ST can be used to improve RF thickness in the context of athletic training and fitness.
        4,000원
        38.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 oC in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 oC. Heating the material to higher temperatures, up to 400 oC, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/ Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 oC. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.
        4,000원
        40.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrical resistances of small-sized activated carbon fiber (ACF) fabric (specific surface area: 1244.7 m2/ g, average pore diameter: 1.92 nm) and felt (specific surface area: 1321.2 m2/ g, average pore diameter: 2.21 nm) sensors were measured in a temperature and humidity controlled gas chamber by CO2 adsorption at different surrounding CO2 concentrations (3000–10,000 ppm). The electrical resistances of ACF sensors decreased linearly as the increase of temperature and decreased exponentially as the increase of humidity in the ambient atmospheric chamber. The electrical resistances of ACF rapidly decreased within 4 s and an equilibrium state was achieved within 10 s due to the very rapid CO2 adsorption at room temperature and 40% humidity. Comparing the difference in electrical resistance values measured during injection of similar concentrations of CO2 after reaching the equilibrium value, the fabric exhibited a significant change, whereas the felt did not, even though it had a relatively larger specific surface area. The reason is that micropore volume greatly affected the amount of CO2 adsorbed, whereas the specific surface area did not affect it as much. Therefore, ACF fabric with large micropores (> 2.0 nm) can be developed and used as CO2 sensors in small rooms such as a passenger vehicles.
        4,000원
        1 2 3 4 5