이 연구는 탄소섬유시트의 보강겹수와 보강위치에 따른 I형 PFRP 휨부재의 휨보강 효과에 대해 조사하였다. 또한, 탄소섬유시트로 보강한 PFRP 휨부재의 실험적, 이론적으로 확인하기 위해 유한요소해석을 실시하였으며, 휨실험 결과와 이론적 해석결과를 비교분석하였다. 휨실험 결과와 유한요소해석 결과는 이론적인 결과와 비교한 결과 일치하는 경향을 보였고, 휨보강 효과가 큰 탄소섬유시트 2겹을 보강한 시편에서 결과에서 오차가 가장 크게 발생하였다.
In this paper, four point bending tests were carried out to analyse flexural strengthening effect by CFRP (Carbon Fiber Reinforced Polymer) layers for I shape PFRP (Pultruded Fiber Reinforced polymer) flexural member retrofitted with CFRP sheet. Comparing load-displacement relation and sectional stress distribution, the flexural strengthening effect by the number of CFRP layers was founded.
Most of the cultural assets in Korea are wooden structures. Due to the material characteristics of wood, the preservation of traditional wooden structure is impossible by simple maintenance. Damaged member is replaced with new member or completely dissolve and restore them. But member has a cultural value, so that it is impossible to arbitrarily replace each member. Although the preservation treatment method using synthetic resin is emphasized, there is no exact standard for proper reinforcement ratio. This paper is experimental study for reinforcement ratio of wooden flexural member with synthetic resins, Reinforced ratio on section area of flexural member. As a result, synthetic resin reinforcement are selected as experimental variables by proper ratio enhanced flexural capacity of reinforced wooden member than new wooden member.
The present study analyzes the flexure behavior of the circular CFT member through experiment and numerical analysis. Through comparison between experimental and numerical results, whether or not the member was a full composite have little effect on the behavior. There circular CFT’s flexure behavior when considering pure moment is almost similar regardless of the interface characteristics between the steel and concrete. This is because there is no difference in the neutral axis of the full-composite and non-composite circular CFT member.
In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.
In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). The number of layers of strengthening CFRP sheet, with a value of 0 to 3 was the test variables. From the experimental results, flextural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet is appropriated considering efficiency and workability.
Recently, practical application of high tension bar is attempted. The main object of using high tension bar is strengthening of material property and decreasing of steel amount. If using high tension bar which is not a definite yield strength,according to strain ratio of high tension bar tensile and compressive dominate mode ciearly, there being a possibility dividing becoming difficult. Specially, Providing steel ratio of balanced destruction is very difficult. In this study, high tension bar to apply to flexural member and the behavior experiment bending after one, will consider high tension bar the application possible standard of existing.
Repaired RC flexural members with ductile cementitious composite are numerically simulated to understand the improved performance in post-peak behavior. Also, stress distributions along steel reinforcements and crack width on the tensile surface are monitored to understand the effect of using ductile cementitious composite as a repair material. The results provide durability characteristics of repaired structures under flexural loading condition.
고밀도 폐유리가 콘크리트를 포함하는 건설 재료로 사용 가능함이 밝혀짐에 따라 본 연구에서는 고밀도 폐유리를 잔골재로 적용한 RC 부재의 구조적 거동을 평가하고자 휨거동 실험을 수행하고 그 결과를 비선형 유한요소해석 결과와 비교 검토하였다. 그 결과, 고밀도 폐유 리를 잔골재로 사용하게 되면, 균열 개수가 감소하고 균열 간격 및 압괴 면적이 증가하였다. 또한, 고밀도 폐유리를 잔골재로 대체한 부재는 높은 처짐 단계에서 연성이 감소되었다. 이러한 이유로 천연골재를 사용한 부재와 동일한 방법의 해석 기법은 고밀도 폐유리를 잔골재로 대체한 부재의 휨거동에 대한 초기강성, 항복하중 및 최대하중을 제대로 예측하지 못하는 것으로 나타났으나, 압괴 진전에 따른 중립축 깊이가 감소하는 것을 해석적으로 구현하게 되면, 비선형 유한요소 해석 결과가 실험결과를 비교적 잘 예측하는 것으로 나타났다.
In this paper, the flexural behaviors with substitution ratio of heavyweight waste glass are compared and evaluated in reinforced concrete members. From the results, when the heavyweight waste glass was used as the fine aggregate, the yielding load (Py) and maximum load (Pu) were less affected. However, the load capacity of the RC member was gradually reduced on the large deformed stage when all of the fine aggregate was replaced by heavyweight waste glass.
A deflection of a RC structure increases when sustained loads are applied in it. In this paper, a parametric study of long-term deflection was performed according to concrete strength, creep coefficient and ratio of sustained load for each design provisions. Results show that a long-term deflection in KSCDC is able to apply an effect of creep using an effective modulus of elasticity.
콘크리트는 장기수명이 요구되는 구조물에 적합한 건설재료로 내구성이 우수하지만 장기간 지하수에 노출되어 발생하는 칼슘용출 현상에 대한 이해 및 이에 따른 RC 부재의 휨 거동 특성을 평가할 필요가 있다. 실험결과에 따르면, 광물질 혼화재는 RC 부재의 장기강도 개선에 효과적이지만, 칼슘용출이 발생하면 RC 부재의 항복하중 및 휨 강성이 감소하고 중립축깊이와 처짐량이 증가하는 것으로 나타났다. 따라서 칼슘용출에 의한 열화는 RC 부재의 성능 저하를 유발하므로 칼슘용출 환경에 노출되는 지하구조물에 광물질 혼화재가 적용될 경우에는, 광물질 혼화재 종류에 따른 최적 혼입 비율이 마련되어야할 것으로 사료된다.
A minimum reinforcement ratio is an important factor to prevent a brittle failure for RC flexural members. In this paper, a parametric study of minimum reinforcement ratio is performed according to concrete strength, steel yield strength and cover depth ratio for each design provisions. A minimum reinforcement ratio using a stress-strain model is suggested. And results show that this mode is able to reflect material strength and cross-section properties properly.
In this study, the 3 point bending tests were conducted to evaluate ductility capacity of splice rebar. As a result, the difference in ductility between RC members embedded in the coupler and general RC members was not significant. For more accurate analysis, 4 point bending tests are considered to be necessary.
In this paper, the flexural behavior of RC member recycled heavy weight waste glass as fine aggregate was evaluated by finite element analysis. From the results, yield point and maximum load decreased with decreasing concrete strength and elastic modulus. Also, the finite element analysis program does not reflect the ductility loss of RC members using heavy weight waste glass as fine aggregate.
The present study was conducted to appraise tow theoretical models for reinforced concrete members strengthened with carbon fiber reinforced polymer(CFRP) sheets. Predicted values using two models by ACI 440.2R-08 were compared with ones obtained from experiment. For this, two flexural specimens were tested: one unstrengthened specimen and the other strengthened with CFRP sheets. Based on the test results, the wow models are reliable by showing good agreement with the test results.
In this study, to investigate flexural behavior according to surface degradation, reinforced concrete member which strength of concrete decreased in compressive zone was analyzed. Also, characteristics of nonlinear behavior were investigated with the level of strength reduction and depth of strength reduction.
When RC members are subjected to chemical attack such as aggressive substances, the surfaces of member are seriously degraded. In this paper, an experimental study is executed to investigate the characteristics of flexural behavior of surface degraded reinforced concrete member. According to results, it is seemed that the surface degradation affect the load capacity, fracture energy, neutral axis depth and rigidity of RC members.