검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 48

        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of flow direction on heat transfer in water cooling channel of lithium-ion battery is numerically investigated. Battery Design StudioⓇ software is used for modeling electro-chemical heat generation in the battery and the conjugated heat transfer is analyzed with the commercial package STAR-CCM+. The result shows that the maximum temperature and temperature difference of battery with Type 1 are the lowest because the heat transfer in the entrance region near the electrode is enhanced. As the inlet velocity is increased, the maximum temperature and temperature difference of battery decreases but the pressure loss increases. The pressure loss in Type 2 channel is the lowest due to the shortest channel length, while the pressure loss with Type 3 or 4 channel is the highest because of the longest channel length. Considering heat transfer performance and pressure loss, Type 1 is the best cooling channel.
        4,000원
        4.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerical analysis has been carried out to analyze seawater flow field and power generation characteristics of the tidal current power generation system for various multi channel shroud systems. Geometrical multi channel arrangement largely affects the flow field characteristics in the shroud system which power generation performance through turbine blade depends on. Sectional averaged velocity in front of the turbine blade which increases more than 2 times compared with channel inlet is much influenced as well as the flow from the rear with curl. And flow variation results in high inlet velocity in horizontal arrangements of multi channels with mechanical output of the turbine. These results are expected to be used as applicable data for the development of the tidal power generation system with shrouds.
        4,000원
        5.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.
        4,300원
        6.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the enhancement of the oxygen diffusion rate in the cathode channel of a proton exchange membrane fuel cell (PEMFC) by pure oscillating flow, which is the same as the mechanism of human breathe. Three-dimensional numerical simulation, which has the full model of the fuel cell including electrochemical reaction, ion and electronic conduction, mass transfer and thermal variation and so on, is performed to show the phenomena in the channel at the case of a steady state. This model could analysis the oscillating flow as a moving mesh calculation coupled with electrochemical reaction on the catalyst layer, however, it needs a lot of calculation time for each case. The two dimensional numerical simulation has carried on for the study of oscillating flow effect in the cathode channel of PEMFC in order to reduce the calculation time. This study shows the diffusion rate of the oxygen increased and the emission rate of the water vapor increased in the channel by oscillating flow without any forced flow.
        4,000원
        7.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An elliptic blending Reynolds stress transport equation model for Newtonian fluids has been extended to predict polymer-induced drag reduction FENE-P fluids. The conformation tensor equation which is related to the polymer stress is adopted from the model form of Resende et al., and the models of redistribution and dissipation rate terms for the Reynolds stress transport equation are considered by the elliptic blending equation. Also, the new model terms for viscoelastic turbulent transport and viscoelastic dissipation in the Reynolds stress transport equation are introduced to consider the polymer additives effect. The prediction results are directly compared to the DNS data to assess the performance of the present model predictions.
        4,000원
        8.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents the possibility of control of nano-fluidics in the bio-inspired nano-sized ion channel using a field effect transistor (FET) structure. We analyzed effects from main dominant factors to control the ion flow in nano-sized channel such as electro-osmosis, Diffusion effect, Coulomb force between ions and pressure force. Additionally, we suggest a strategy to control the ion flow accurately at the specific position in the nano channel by handling the viscosity, ion molecular density, pressure, gate and trans-cis voltages of FET structure.
        4,000원
        9.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research is to investigate the performance analysis of methanol fuel cell for flow channel with four different types of the channel (Serpentine I, II, Inter-digitated, Parallel) in the fuel cell stack. Velocity, pressure, temperature and density distributions of fluid over the flow domain of the flow channel are numerically calculated for the optimum design of flow channel with uniform inlet velocity. According to better water discharge and mutual gas reaction with low pressure drop and high density difference between inlet and outlet in the flow channel, Serpentine I type is of highest performance of the flow channel shapes in the present methanol fuel cell models.
        4,000원
        10.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research is to investigate the performance analysis of fuel cell for flow channel with four different types of the channel (Serpentine I, II, Inter-digitated, Parallel) in the fuel cell stack. Velocity, pressure. and temperature distributions of fluid over the flow domain of the flow channel are numerically calculated for the optimum design of flow channel with unifrom inlet velocity. According to the calculations of low pressure drop between inlet and outlet in the flow channel, Serpentine I type is of highest performance of the flow channel shapes in the present fuel cell model.
        4,000원
        11.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we modeled a actual shape of a plate heat exchanger into triangular grooved channel and tried to examine flow characteristics experimentally by particle image velocimetry. Five Reynolds numbers were selected with the height of grooved channel and sectional mean velocity of inlet flow. As a result, the triangular grooved channel had a compound flow consisting of the flow in lower channel and the groove flow receiving shear stress by the channel flow. The sheared mixing layer, in the boundary between the triangular groove and the channel, affected main flow to raise turbulent in the channel.
        4,000원
        12.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A numerical analysis was performed to study PEMFC characteristics depending on the flow direction of reactant gas in cathode gas channel using the Fluent. As cathode relative humidity increases, water mass fraction increases due to back diffusion from cathode. For the both of co-flow and counter-flow cases, water mass fraction is higher near the hydrogen inlet region where the chemical reaction rate is high. In overall, counter-flow case gives higher current density compared to co-flow case for the same operating conditions. However, the difference in the current density is not high. The temperature is also higher near the hydrogen inlet region due to the chemical reaction rate for the both of co-flow and counter-flow cases.
        4,000원
        13.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.
        4,000원
        14.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.
        4,000원
        16.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 성층화된 수로에서 3차원 hill과 같은 해저지형이 유동장에 미치는 효과를 수치실험을 통해 밝히고자 하였다. 계산결과 hill 주위의 유동장은 지형과 성층의 효과를 복합적으로 받는 것으로 나타났다. hill 배후에서 형성된 칼만와류는 성층효과로 인해 저층에서만 나타났다. 이러한 와류는 hill 중심의 밀도를 감소시켜 성층화된 열염구조를 불안정하게 하는 역할을 하였고 이로 인하여 등밀도선을 따라 흐르는 흐름은 hill 전면의 경우 깊어지는 등밀도선을 따라 하강한 뒤, 그 후면에서는 다시 등밀도선을 따라 상승하는 패턴을 나타내었다. 그 결과 연직유속은 hill의 전면에서는 침강류, 그 후면에서는 용승류가 형성되는 특징을 나타냄과 동시에 수평적으로 보았을 때 hill의 측면을 통해 가장 활발하게 용승이 발생하지만 표층까지 영향을 크게 미치지는 않는 것으로 나타났다.
        4,000원
        17.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This experimental study was performed to investigate internal flow and unsteady flow characteristics using a model for actual shape of a Plate heat exchanger and visualization of flow through the particle image velocimetry. Seven Reynolds numbers were selected by calculation with the height of grooved channel and sectional mean velocity of inlet flow in the experiment, and instantaneous velocity distributions and flow characteristics were experimently investigated. The triangular grooved channel had a compound flow consisting of the flow in lower channel and the groove flow receiving shear stress by the channel flow in the experiment. The sheared mixing layer, in the boundary between the triangular groove and the channel. affected main flow to raise turbulent in the channel.
        4,000원
        20.
        1997.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 하천환경의 생태적 재생을 목적으로 자연형 저수로 호안공법을 개발하기 위해 수행되었다. 이를 위해 실험하펀으로 선정한 양재천 학여울 구간에 사주부, 수충부, 얕은 만 3가지 유형의 하안경관 특성에 따라 촌 10가지 공법을 개발, 시험 족용하였다. 각 호안공법의 설계에서는 정수식물의 식재에 중점을 두었으며 설계된 공법들은 현장 적용되었고, 적용후 1년간의 경관 형성과정과 식생복원 모니터링을 실시ㅏ였다. 일ㄹ 통해 자연형 저수로 호안공법의 기술적 실행 가능성을 높여, 관행적으로 행해지고 있는 하천공법을 대체할 수 있는 생태적 대안을 제시하였다.
        3,000원
        1 2 3