고속도로 터널 구간은 일반 도로에 비해 사고 발생 빈도와 심각도가 높으며, 특히 터널 내에서 발생하는 사고나 공사와 같은 돌발 상황은 대기 행렬을 유발해 후미 추돌 위험을 증가시킨다. 본 연구에서는 운전자가 돌발 상황 지점에 접근할 때 선제적으로 대응할 수 있도록, Driving Simulator를 활용하여 다양한 정보를 제공하는 터널 내 교통관리 시스템의 효과를 분석하였다. 분석 대상은 차로 변 경 유도, 속도 감소 유도, 돌발 상황 안내로 구성된 세 가지 교통관리 시스템의 개별 효과와 이들의 통합 운영이 터널의 안전성과 운 영 효율성에 미치는 영향을 포함하였다. 분석 결과, 세 가지 교통관리 시스템을 통해 터널 내 평균 통행 속도가 증가하였으며, 돌발 상황 발생 지점에서 차량의 차로 변경과 감속이 선제적으로 이루어지고 급감속 횟수가 현저히 감소하였다. 본 연구는 터널 내 돌발 상황 발생 시 다양한 정보를 제공함으로써 터널의 안전성과 교통흐름을 개선할 수 있음을 입증하였으며, 특히 여러 시스템을 통합적 으로 운영할 때 그 효과가 극대화됨을 Surrogate Safety Measure를 통해 확인하였다. 이러한 결과는 향후 터널 교통관리에서 단일 시스 템의 기능만을 고려하기보다는, 다양한 교통관리 시스템 간 상호작용을 고려해야 함을 시사한다.
This study was conducted to solve the problem of the existing odor management method taking a long time to analyze samples. Using real-time air quality measurement equipment, 17 designated odor substances were measured three times at a business site causing odor complaints. As a result, three substances, hydrogen sulfide, trimethylamine, and methyl mercaptan, were measured at higher levels than the site boundary emission standards inside the business site. In the case of trimethylamine, it was measured about 500 times higher than Odor Threshold Values, and was estimated to be the substance causing the odor. Through an inspection of the business site, improvements were instructed to be made to the wastewater treatment process, which is the emission facility where trimethylamine is generated. Subsequent measurement results showed that designated odor substances were measured within the emission standards at all locations, and it was determined that efficient management of odorgenerating businesses would be possible if Selected Ion Flow tube-Mass Spectrometry was utilized.
Nuclear power generation is expected to be enlarged for domestic electricity supply based on the 10th Basic Plan of Long-Term Electricity Supply and Demand. However, the issues on the disposal of spent nuclear fuel or high-level radioactive waste has not been solved. KBS-3 concept of the deep geological disposal and pyroprocessing has been investigated as options for disposal and treatment way of spent nuclear fuel. In other way, the radionuclide management process with 6 scenarios are devised combining chlorination treatment and alternative disposal methods for the efficient disposal of spent nuclear fuel. Various scenarios will be considered and comprehensively optimized by evaluation on many aspects, such as waste quantity, radiotoxicity, economy and so on. Level 0 to 4 were identified with the specialized nuclide groups: Level 0 (NFBC, Hull), Level 1 (Long-lived, volatile nuclides), Level 2 (High heat emitting nuclides), Level 3 (TRU/RE), Level 4 (U). The 6 options (Op.1 to 6) were proposed with the differences between scenarios, for examples, phase types of wastes, the isolated nuclide groups, chlorination process sequences. Op.1 adopts Level 0 and 1 to separate I, Tc, Se, C, Cs nuclides which are major concerns for long-term disposal through heat treatment. The rest of spent nuclear fuel will be disposed as oxide form itself. Op.2 contains Sr separation process using chlorination by MgCl2 and precipitation by K2CO3to alleviate the burden of heat after heat treatment process. U/TRU/RE will be remained and disposed in oxide form. Op.3 is set to pyroprocessing as reference method, but residual TRU/RE chlroides after electrorefining will be recovered as precipitates by K3PO4. Op.4 introduces NH4Cl to chlorinate TRU/RE from oxides after Op.2 applied and precipitates them. TRU/RE/Sr will be simultaneously chlorinated by NH4Cl without MgCl2 in Op.5. Then, chlorinated Sr and TRU/RE groups will be separated by post-chlorination process for disposal. But, chlorinated Sr and TRU/RE are designed not to be divided in disposal steps in Op.6. In this study, the mass flow analysis of radionuclide management process scenarios with updated process variables are performed. The amount and composition of wastes by types will be addressed in detail.
PURPOSES: This study aims to suggest a proper left-turn treatment method for the bicycle traffic flow at four-legged intersections. METHODS: Four types of crossing methods are proposed and analyzed : (1) indirect left turn, (2) direct left turn, (3) direct left turn on a Bike Box, and (4) direct left turn on bike left turn lane. The VISSIM simulation tests were conducted based on forty-eight operation scenarios prepared by varying vehicle and bicycle traffic volumes. RESULTS : The results from the four-legged signalized intersections suggest that (1) the indirect left turn is appropriate when vehicle demand is high, (2) the direct left turn is efficient on most traffic situation but the safety is a concern, (3) the direct left turn on a Bike Box is appropriate when bicycle demand is high while vehicle demand is not, and (4) the direct left turn on a bike left turn lane is appropriate when both vehicle and bicycle demand are low. CONCLUSIONS : The direct left turn of bicycle provides more efficiency than the indirect left turn at the four-legged intersections but to apply the methods and to study more, advanced evaluation methods, related law, and insurance programs are needed.
야마자키 토마토용 배양액을 이용하여 토마토를 담액 재배할 경우, pH 7.5 정도인 수돗물을 용수로 한 배양액에 NH4H2PO4를 사용하므로써 배양액의 pH를 안정시키는 동시에, 적정 식물생장을 유도할 수 있는 NH4H2PO4농도를 찾고자 실험을 수행하였다. 그 결과 NH4H2PO4의 농도를 증가시킴에 따라 배양액의 pH가 감소하는 경향을 보였으며, EC는 반대의 경향을 보였다. NH4-N 8/3 me/l 처리구에서는 식물체에 황화현상이 나타났다. NH4-N이 4/3 me/l 혹은 5/3 me/l인 처리구에서 pH와 EC를 안정적으로 유지할 수 있었다. 엽장이나 줄기직경은 NH4-N 2/3 me/l처리구에서 큰 값을 나타냈고, 과실의 당도는 NH4-N 5/3 me/l 처리구에서 가장 높았다. 이상의 결과로부터, 토마토의 담액 재배시 수확기 이전에는 NH4-N을 2/3 me/l로 하고, 수확기에는 NH4-N을 4/3-5/3 me/l로 하는 것이 바람직한 것으로 사료되었다.
과불화합물(PFCs, Perfluorinated compounds, 이하 과불화화합물) 등은 발암성, 생식독성, 생농축성 등을 가지고 특히 장거리 이동성을 가지고 있는 대표적인 잔류성 유기오염물질로 분류되고 있다. 스톡홀름 협약은 사전예방 원칙에 입각하여 잔류성 유기오염물질로부터 인간의 건강 및 환경 보호를 목적으로 하는 국제협약으로 ’04년 5월 발효되었다. 우리나라는 ’01년 10월 협약에 서명한 후 협약가입을 위해 잔류성유기오염물질의 배출 실태를 파악하고, 관련 법규를 제정하는 등 협약가입 준비 후, ’07년 2월에 가입하였다. 제4차 스톡홀름협약 당사국총회에서 과불화옥탄술폰산(PFOS)과 그 염류 등은 규제 대상물질로 등재(’09.4)하였으며, PFOS의 경우 용도에 따라 항구적 면제(Acceptable purpose), 특정면제(Specific Exemption), 사용제한하고 있으며 PFOA는 스톡홀름협약 POPs 검토위원회(POPRC)에서 위해성 검토 중으로 규제예고 되어 있다. 하지만 국내에서는 최근 아웃도어용품 등의 방수 기능성 제품에서 과불화화합물이 검출되어 논란이 일어나는 등, 과불화화합물의 위해성에 대한 관심이 증대되고 있으나, 과불화화합물 함유 제품 및 폐기물의 관리체계는 초기 정비 단계로, 스톡홀름 협약의 이행 및 과불화화합물 함유 제품 및 폐기물의 체계적 관리가 필요한 시점이다. 이에 본 연구에서는 스톡홀름협약 이행과 과불화화합물 함유폐기물을 적정처리를 위해 과불화화합물의 생산・사용・폐기 등 전과정 물질흐름분석을 통해 정량적인 자료를 확보하고, 물질과 제품의 사용용도별 폐기물 관리체계를 마련하였다.
For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.
The most common types of refrigerants used in automobiles today usually include HCFCs and HFCs, which have the potential of ozone depletion or the greenhouse effect. Although environmentally friendly refrigerants are being developed, there is still a lack of safety and high-cost problems for new refrigerants. This study was conducted to determine the flow of refrigerants from automotive air conditioners and examine their potential problems and a proper management plan. The number of automobiles manufactured, the number of automobiles in use, and end-of-vehicle flow were examined through available statistics and reports. The material flow of refrigerants has been determined by the life cycle of automobiles and the unit requirements of the refrigerants used in automobiles. Based on the results, in 2014, there were approximately 1,017 tons of refrigerants introduced from the manufacturing stage of automobiles, and about 395 tons of refrigerants leaked from the use stage. After the use stage, only 13 tons of refrigerants were delivered to treatment facilities and 195 tons were emitted into the atmosphere during the dismantling process. As a result, in South Korea in 2014, a large amount of refrigerants (590 tons) was estimated to have been leaked into the atmosphere from automotive air conditioners during the use and dismantlement stage. Several preventive measures for refrigerants should be properly enforced by introducing economic incentives as well as a monitoring system with strengthened laws and policies.
지난 1980년대 이래 규제완화, 개방화, 세계화 등의 신자유주의 사고가 확산하면서 국제자본이동 이 크게 늘어났고, 신흥국은 높은 거시경제 취약성과 경기순응성에 노출되었다. 이에 대응하여 신흥 국들은 자본유출입을 규제하는 자본이동관리정책을 실시하였고, 특히 2008년 글로벌 금융위기 이후 거시건전성 정책의 필요성이 높아지는 가운데 2010년대 들어 IMF 등 국제사회가 긍정적 견해를 표명 한 이후 동 정책이 효과가 있다는 분석이 많아지고 있다. 한국도 이와 같은 거액의 자본이동에 대응하여 1990년대 이래 여러 가지 미시건전성 조치를 실시 해 오고, 2010년대 들어서는 선물환포지션 한도제, 외환건전성부담금 도입 등 거시건전성 정책을 도 입하여 경제 불안정을 해소하는데 효과를 거둔 것으로 평가받고 있다. 그러나, 한국은 아직도 높은 대외 의존적 경제체제를 유지하고 있어 세계 경제의 충격에 취약하 고, 금융·외환시장이 외국투자자들의 영향을 많이 받고 있는 실정이다. 따라서 한국은 향후 기초경제여건 강화, 대외 모니터링시스템 구축, 적정 외환보유액 유지, 국제 사회와의 긴밀한 협조 및 중장기적인 원화 국제화를 도모하여야 할 것이다. 주 제
Environmental concerns regarding mercury-containing fluorescent lamps have been raised in many countries, especiallyafter International Minamata Convention on Mercury in 2014. Improper management and disposal of the waste such aslandfilling and incineration may pose serious threats to the environment and human health. In Korea, mercury-containinglamps have been regulated by the expanded producer responsibility (EPR) system since 2004. However, only less than30% of the lamps sold to consumers has been collected by municipalities. In order to provide additional measures relatedto proper management of fluorescent lamps, there is a need for a quantitative material flow study by life cycle stage. Inthis study, material flow analysis was conducted by collecting relevant data from literature review, available statistics,and field site visits to lamp recycling facilities. According to the results of this study, approximately 150 million unitsof fluorescent lamps were put on the market in 2013, while 36.9 million units of the lamps were recycled mainly fromhouseholds in the year. It is estimated that approximately 3.5 million units and 2.3 million units of lamps in disposalbags are disposed and treated in landfills and incineration facilities, respectively. This study also found that there weresignificant amounts of uncollected lamps that were present in industrial sectors. The material flow of the industrial sectorsare largely unknown and not properly regulated by government. Based on the mass flow of mercury in lamps, 1.6ton ofmercury in lamps came into consumer markets in 2013. Approximately 407kg of mercury was collected by the recyclingprocess at the fluorescent lamps recycling facility. The mercury disposed in landfills and treated in incinerators were foundto be 38.3kg and 25.5kg, respectively. Further study may be warranted to focus the material and mercury flow of lampsin industrial sectors in order to accurately determine the final destination and disposal of such waste in the environmentbecause there are very few available statistical data regarding distribution flow and treatment of lamps in the sectors.
This study aims at the estimation of a river management flow in urban basin analyzing Sinchun basin to be the tributary of Kumho river basin. The river management flow has to satisfy a low flow as natural flow and an environmental preservation flow estimated by a dilution flow to satisfy a target water quality in drought flow.
Therefore for the estimation of a river management flow in Sinchun in this study, first Tank model as a basin runoff model estimates a low flow, a drought flow from a flow duration curve in Sinchun, second QUAL2E model as water quality model simulates water quality in Sinchun and estimates environmental preservation flow to satisfy a target water quality, BOD 8 ㎎/ℓ by a dilution flow derived from Kumho river, Nakdong river and ground water. And the river management flow is estimated by addition of a use flow and a loss flow to more flow between a low flow and an environmental preservation flow.