동절기에 시민들의 안전 및 편리성을 위하여 도로 유지 보수는 필수적이다. 유지 보수 중 도로의 눈 및 얼음을 제거하기 위해서는 제설제를 살포하는 것이 가장 일반적이다. 하지만, 국내의 제설제 재살포 시기 및 양에 대해서는 연구된 바가 존재하지 않는 실정이기 때문에 제설제 살포 후 녹은 눈이 재결빙이 되는 소요시간이 3시간이라는 점을 참고하여 현재 국내에서는 기후 변화에 관계없이 3시 간마다 초기에 살포한 양을 제설제를 살포하거나 현장 감독자의 주관적인 판단으로 제설제 살포량을 결정하여 제설제 살포를 실시하 고 있다. 이렇게 무분별한 제설제 살포는 과다 살포로 이루어져 환경 및 구조적 문제를 야기할 수 있으며 위 문제를 해결하기 위해서 는 도로에 잔존하고 있는 제설제의 양을 파악하고 무분별한 제설제 살포를 막아야할 필요가 있다. 따라서 본 연구에서는 도로에 물을 살포하여 전기전도도를 이용하여 염분을 측정하는 장비인 SOBO3+를 이용하여 도로의 잔존염분량을 측정하기 전, 국내 고속도로에서 사용되는 제설제와 SOBO3+ 장비와의 상관 관계를 분석하여 장비 검증을 실시하였다. 실험은 국내에서 가장 많이 사용되는 살포 방법 인 습염식 살포 방법을 참고하여 고형 염화나트륨과 30% 염화칼슘 수용액을 사용하였으며 정확한 염분 측정치를 얻기 위하여 매끄러 운 화강판 및 고형 염화나트륨을 모두 용해시켜 측정을 진행하였다. 제설제 살포량은 염화나트륨의 경우 SOBO3+가 최대 50g/m² 까지 밖에 측정이 가능하다는 점을 참고하여 10~50g/m² 범위에서 살포 밀도를 10g/m²씩 변화시켜가며 측정한 결과, 살포량 대비 약 10% 과 소평가되어 측정됨을 확인하였다. 또한 염화칼슘 수용액의 경우 국토교통부 도로제설업무수행요령을 참고하여 국내 습염식 살포 기준 에서 염화칼슘 수용액 살포량이 최대 20g/m²을 초과하지 않아, 10~30g/m² 범위에서 살포 밀도를 10g/m²씩 변화시켜가며 측정한 결과, 살포량 대비 약 70% 과소 평가 되는 것을 확인하여 30% 염화칼슘 수용액을 정확하게 측정하는 것을 확인하였다. 또한 노면 온도가 측정 성능에 영향을 미치지 못하는 것을 확인하였다.
도로 결빙이란 도로 표면에 형성된 얼음층으로 도로 결빙으로 인한 교통사고의 치사율은 결빙이 원인이 아닌 교통사고의 치사율과 비교하여 1.5배 높은 수치인 2.3으로 나타났다. 현재 국토교통부에서는 결빙사고 취약구간을 선정하고 관리하기 위하여 결빙 취약구간 평가기준표를 제시하였다. 그러나 도로 결빙은 노면 온도와 수분 공급에 따라 형성되며 기온, 구름량, 풍속, 풍향, 상대습도, 강수량 등 의 기상인자들이 복합적으로 작용하여 발생하며, 기존의 평가 기준은 이와 같은 인자들을 충분히 반영하지 못하여 결빙 형성을 예측 하고 평가하는 능력이 부족하다고 판단된다. 따라서 본 연구는 결빙 교통사고 데이터의 통계적인 분석을 통하여 결빙이 형성되는 기 상 조건을 구체화하고 결빙사고 및 결빙 형성을 예측하기 위한 기상학적 기준을 마련하는 것을 목적으로 진행되었다. 2018년 1월 1 일~2024년3월 15일 동안 발생한 결빙 사고와 사고 발생 당시 및 이전 6시간동안의 기상 데이터를 분석 데이터로 사용하였다. 이때, 역거리 가중법, 기온감률 등 공간보간기법을 적용하였다. 이후, 박스도표, 히스토그램, 경험적 누적분포함수 등의 통계분석을 적용하여 결빙사고의 기상 분포 특성을 확인하였다. 최종적으로 결빙사고의 몬테카를로 시뮬레이션을 활용하여 기온 및 습도에 따른 결빙사고 의 발생 확률을 계산하였다. 이와 같은 연구 결과는 결빙 형성을 예측하는 기온 및 습도의 기준점으로 제시할 수 있으며 더 나아가, 추후 결빙사고 예방 및 예보의 기준으로 활용이 가능할 것으로 기대된다.
PURPOSES : The purpose of this study is to statistically analyze the meteorological factors that contribute to the formation of road surface icing based on actual cases of icing accidents and provide directions for improving icing evaluation criteria. METHODS : In this study, we collected cases of domestic road icing accidents by searching news articles with the keyword ‘icing collision accidents’. Subsequently, we determined the latitude, longitude, and altitude of accident locations using satellite map service. We applied the Inverse Distance Weighting (IDW) method and temperature lapse rate to estimate meteorological data at each location. Finally, statistical analysis was conducted for temperature, humidity, and precipitation occurrence using probability density functions. RESULTS : As a result, road icing accident data points with identifiable location coordinates were collected. Among these, temperature, humidity, and precipitation occurrence from Automated Weather Stations (AWS) data were selected for analysis. During the process of correcting meteorological factors using the Inverse Distance Weighting (IDW) method, the optimal Weighting Exponent (p) that minimizes the error was determined and applied. The results showed that accidents occurring in the morning indicated the highest accident occurrence rate. The average temperature at the time of the accidents was -1.4°C, with a humidity level of 85.1%. Precipitation was observed at the time of the accident in 19 cases. CONCLUSIONS : Icing on pavement can occur not only under extreme weather conditions but also under typical meteorological conditions. Typically, icing can occur when the relative humidity is above 70%. Accordingly, for future improvements in the evaluation criteria for icing-prone areas by the Ministry of Land, Infrastructure and Transport, it is possible to incorporate the temperature and humidity ranges that generally lead to icing, taking into account climate characteristics.
PURPOSES : The actual service life of repair methods applied to cement concrete pavement is analyzed based on de-icing agent usage.
METHODS : Highway PMS data pertaining to de-icing agent usage are classified into three grades: low (1~5 ton/lane/year), medium (5~8 ton/lane/year), and high (greater than 8 ton/lane/year). The repair methods considered include diamond grinding, patching, joint repair, partial depth repair, and asphalt overlay on five major highways. The service life of each repair method is analyzed based on the usage level of the de-icing agent.
RESULTS : The service lives of the applied repair methods are much shorter than expected. It is confirmed that the service life afforded by diamond grinding, patching, and joint repair methods are not significantly affected by the use of de-icing agents, whereas that afforded by asphalt overlay and partial depth repair methods is affected significantly. The service life afforded by the asphalt overlay and partial depth repair methods decreases at high usage levels of the de-icing agent (greater than 8 ton/lane/year).
CONCLUSIONS : Among the repair methods considered, the service life afforded by partial depth repair and asphalt overlay is affected significantly by the amount of de-icing agent used. Additionally, the differences between the expected and actual analyzed service lives should be considered in the next-generation maintenance strategy for cement concrete pavements.
PURPOSES: The intensiveness of highway management has increased owing to the growth in the number of vehicles and the rapid climate change. The disadvantages produced by these factors can affect management time and cost. Serious traffic accidents and traffic jam may be experienced when snow fall accumulates on highway surfaces and the friction between tires and pavements is lower than that in the general state, in a non-management condition. Such conditions need intensive management. In this regard, one of the spread methods used for the melting material is pre-wetted salt (PWS), which is the frequently used method in South Korea. In the PWS method, the solid material with CaCl2 is mixed with water in 30% concentration and then finally mixed with NaCl before application to pavements. The chloride-type melting material not only is cheaper, but also has a high melting property than the others. It can shorten the pavement or structure life by deterioration and corrosion. This melting material can affect the flora near the highways; hence, an eco-friendly de-icing agent must be utilized considering the environmental effect.
METHODS : The Kalman filter algorithm (KFA) was utilized herein to develop optimization models using the performed test data. The KFA, which was developed from recursive filter algorithms, such as the low- and high-pass filters, applies a weighting filter to the Kalman filter. The algorithm has the property of utilizing the filter and updated estimations. In this regard, melting tests were performed for the real applicative utilization of de-icing agents. The KFA was also applied to reduce the error rates and optimize the relationships between the test data and the predictions.
RESULTS: Comparing the measurements performed, the error was reduced by 1.69 g when the KFA was applied. Moreover, the error can be optimized to approximately 91.4% compared to the test errors. The prediction data had over 85% tendency in the test measurement, showing that the KFA application can reduce the error and increase the tendency. By comparison, the agent with CaCl2 showed the best ice melting performance within 10 min without surface temperature. However, the PWS with a 25% concentration indicated the best water melting performance from start to end of the test time, implying that this is a powerful agent in terms of performance.
CONCLUSIONS : The melting test is an artificial test method; therefore, it can generate a huge error from the test. The error and the tendency can be controlled by tracking the measurement error and the white noise matrix using the KFA. A further research will be performed to track the measurement error and the white noise matrix. Other optimization methods will also be applied to reduce the experimental error.
PURPOSES: This study aimed to develop a proactive anti-icing system for driving zones at risk during winter.
METHODS: An electric low power potable anti-icing system, operated with a battery and solar cell, was designed and fabricated. Potassium acetate was used as the anti-icing chemical. The developed anti-icing system was tested in the laboratory in advance to confirm its function. Potassium acetate was also tested both in the laboratory and outdoor (exposed to the sun) conditions. The anti-icing system was set up on the road for field testing.
RESULTS: The 195 m spread distance of the anti-icing system was verified in the field test.
CONCLUSIONS: The anti-icing system developed for safe driving on the road will be cost-effective and economical during installation and maintenance compared with currently used snow melting systems on vulnerable driving zones.
An icing phenomenon of wind turbine blade are caused by wind speed, air temperature, liquid water content, droplet size, and so on. In this study, the analyses were carried out at a liquid water content of 0.20g/㎥, droplet size of 25 um, wind speed of 11.4m/s and air temperatures of -15, -10, -5℃ using NREL 5MW wind turbine. The software uses FENSAP-ICE's CFD Flow Solver, Drop 3D and ICE 3D. The analysis of icing shape and mass with temperatures according to air foil was derived, and the required heat quantity for de-icing was calculated at NACA 64618 airfoil for air temperature of -15℃. Power curves with wind velocities are suggested for economical analysis.
PURPOSES :This study evaluates the reasonableness of the recommended amount of deicing chemicals based on historical data for snow removal. The result can be used to aid decision-making for the reservation of cost-effective de-icing chemicals.METHODS :First, the recommended amount of de-icing chemical to use and historical usage data were evaluated to identify specific usage characteristics for each region. Road maintenance length and snow-removal working days were analyzed over the past five winter seasons. Next, differences in the recommended amount of chemical to use and actual use were compared using the Kolmogorov-Smirnov test. Last, the two types of data were analyzed using a chi-square test to verify if the two distributions of variation pattern are statistically significant. We found that there are significant differences between the data from each region during the past five winter seasons.RESULTS :The results showed that the equation for calculating the amount of de-icing chemical to use appears to be revised.CONCLUSIONS :The results imply that the equation for calculating the amount of de-icing chemical to apply as a national standard is very important when the public agency makes decisions related to snow-removal.
PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezingthawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.
PURPOSES: This study aims to establish the priority of introducing anti-icing spray system for regions of the National Highways in South Korea. Using this study, a logical plan for instituting such an anti-icing spray system can be established for the National Highways
METHODS : The Analytical Hierarchy Process (AHP) was employed to prioritize the implementation of an anti-icing spray system on Korean highways. For this purpose, an existing scoring table developed by the Ministry of Land, Infrastructure Transport Affair was slightly modified in order to reflect recent trends in winter maintenance. A survey was conducted to gather the preferences regarding the developed hierarchy of road experts and agencies. Finally, the final score was produced by integrating the scoring results with estimated weights for each evaluation criterion.
RESULTS: In general, Honam and the metropolitan areas have relatively high priority while other areas such as Chungcheong, Young Nam, and Gang Won appear to be uniform in importance in terms of establishing an anti-icing spray system. This result may indicate that historical weather data and traffic volumes are significant factors in deciding in winter maintenance polices
CONCLUSIONS : In this study, useful insights are suggested regarding winter maintenance by simultaneously performing rapid snow removal and proactive treatment. Issues of resource allocation may be potential research items in the field transportation engineering.
PURPOSES: The purpose of this study is to analyze the service life of expressway pavement based on both traffic volumes and use of deicing chemicals.
METHODS: A database was built using expressway rehabilitation history information from over the last decade. In order to estimate the service life of expressway pavement, various analysis methods were considered, and a decision was made to perform analysis using a method based on an accumulated rehabilitation ratio. The service life of expressway pavement was then analyzed by classifying the scale of traffic volume and extent of de-icing chemicals used.
RESULTS: The service life of PMA and SMA ranged from 7.8 to 10.6 years and from 9.9 to 12.0 years, respectively. The service life of JCP ranged from 16.0 to 22.2 years, and the service life of CRCP was 33.5 years on average. Results of assessing service life according to traffic volumes and de-icing chemicals showed that the lower the traffic volumes were, the greater the service life of PMA and JCP, and the less that de-icing chemicals were applied, the greater the service life of JCP.
CONCLUSIONS : The dependence of expressway pavement service life on traffic volumes and de-icing chemicals makes it possible to apply LCCA for regional maintenance plans and cost-effective selection of expressway pavement type.
융설액 분사 시스템은 강설이 예상되거나 진행 중인 상황에서 즉시 대응이 가능하며, 강설 초기에 효율적인 처리로 강설로 인해 발생 가능한 교통사고와 교통 지정체를 감소시킬 수 있는 장점을 가지고 있다. 그러나 시스템의 설치비용이 고가이고, 설치되는 장비의 종류에 따라 운영 및 유지관리 비용이 지속적으로 소요되기 때문에 모든 도로 구간에 설치하는 것은 현실적으로 불가능하다. 최근 국내에서는 결빙 위험 구간을 파악할 수 있는 프로그램들이 개발되어 턴키 및 대안 설계에 활용되고 있다. 그러나 프로그램 개발 업체들마다 분석 방식이 상이하고 객관적인 기준이 없는 실정이다. 이에 따라 융설시스템 적용구간에 대한 기준 마련도 시급하다고 볼 수 있다. 본 연구에서는 선형, 기상조건, 일조조건 등을 다양한 도로 조건을 정량화하여 어떤 구간에 우선적으로 융설시스템을 적용하여야 하는지 판단할 수 있는 기준을 제시한다. 이를 위해 국내 지역별 기상 조사, 지형지물에 의해 음지 발생 여부 분석, 선형과 미끄럼 저항성을 고려한 차량 시뮬레이션 등을 수행하고 이론적 검토를 통해 설치 기준 방법론을 정립하는데 중점을 둔다.
This study was conducted to investigate the growth of Dendranthema zawadskii in damaged soils when they are treated with improvement agents. The treatments consisted of a control (unamended field soil) and the application of a loess ball of 1 cm to the field soil. According to the degree of damage the de-icing agent had caused, the soils were divided into 3 areas (based on the yellowing of Pinus densiflora for. multicaulis in soil surveys): H (high saline), M (medium saline), and L (low saline). A total of six treatments were performed: D. zawadskiia plant without soil amendment (H; high saline soil, M; medium saline soil, L; low saline soil), and a D. zawadskiia plant with loess ball on the soil surface (H.L; high saline soil with loess ball, M.L; medium saline soil with loess ball, L.L; low saline soil with loess ball). The results showed that D. zawadskiia growth went from highest to lowest in the order: M.L > L.L > M > L > H.L > H. Plant growth results showed that soils treated with soil amendments (loess ball) were better for D. zawadskii growth than untreated soils.
The purpose of this study is to investigate the effect of ICING recovery method after sports climbing to blood lactate concentration and heart rate. The subjects were 12 male 20s undergraduate students (ICING group of 6, Control group of 6). Blood lactate concentration and heart rate were measured before climbing, after climbing, 5- minute recovery and 10minute recovery. Heart rate were also measured during the climbing. The subjects performed climbing 3 times. Data were analysed by SPSS 20.0. To compare blood lactate concentration and heart rate among groups, the independent samples t-test was employed using an alpha level of .05. Mean and standard deviations were computed. Results show that there is no significant difference between the icing group and nonicing group. Yet, the differences of blood lactate concentration were observed between groups. Blood lactate concentration of icing group was significantly higher than non-icing group in the condition of 1st climbing. Blood lactate concentration of non-icing group was significantly higher than icing group in 2nd 10-minute recovery. ICING recovery method is shown to be not significantly effective to blood lactate concentration and heart rate. This could be comprehended that long-term high-intensity (70% of 1RM) exercise can be prepared for the further research.
This study was conducted to analyze seasonal variations of de-icing salt ions harvested from soils and plants according to salt damage of Pinus densiflora f. multicaulis, a evergreen conifer, on roadsides. Pinus densiflora f. multicaulis was divided into three groups referred to SD, ND, and WD (serious salt damage (SD) = 71 100%, normal salt damage (ND) = 31 70%, and weak salt damage (WD) = 0 30%) based on the degree of visible foliage damage, and measured acidity (pH), electrical conductivity(EC), and de-icing salt ions (K+, Ca2+, Na+, and Mg2+) harvested from soils and plants. The results indicated that acidity, electrical conductivity, and de-icing salt ions of soils and plants were significantly affected by seasonal variation and salt damage. In addition, a strong positive liner relationship was observed in plants between the concentration of de-icing salts and salt damage in spring, while the relationship among seasonal variation and salt damage in soil were not significant. The results from this study has important implications for the management of conifer species in relation to salinity and roadsides maintenance.
De-icing work in highways has been changed from sand and calcium chlorides spreading to pre-wetted salt spreading since 2000s. Recently, the concern on the premature deterioration of concrete structures due to de-icing salts and its counter measurements has been increased. This paper describes the change of de-icing methods and deterioration due to chloride attack and specification of durable concrete.
The purpose of this study is to prevent the occurrence of safety accidents and traffic accidents in winter by presenting the criteria of de-icing and anti-icing of cable-supported marine bridges. In winter, due to the structural characteristics of the cable support bridge, the main tower and the cable are positioned upon the reinforcing beam that the vehicle passes through, and snow and ice that piled on the main tower and the cables is fall to the road. so It can be a reason of the traffic accident. In this study, we analyzed the mechanism for the snow accretion and ice accretion and suggested preventive measures about de-icing and anti-icing.
A huge amount of de-icing agent is sprayed during winter to promote traffic safety in cold regions, and the quantity of de-icing agent sprayed has increased each year. The main ingredients in commonly used de-icing agents are chlorides, such as calcium chloride(CaCl2) and sodium chloride(NaCl). While calcium chloride is mostly used in Korea and sodium chloride is usually used in the U.S. and Japan, all de-icing agents include chloride ions. The chlorides included in sprayed calcium chloride-based de-icing agents have severe adverse effects, including the corrosion of reinforcing steels through salt damage by infiltrating into road structures, reduced structural performance of pavement or damage to bridge structures, and surface scaling, in combination with freezing damage in winter, as well as water pollution. In addition, the deterioration of paved concrete road surface that occurs after the use of calcium chloride-based de-icing agent accelerates the development of visual problems with traffic structures. Therefore, the present study was performed to prepare an environment-friendly liquid de-icing agent through a reaction between waste organic acids and calcium-based by-products, which are industrial by-products, and to analyze the properties of the de-icing agent in order to evaluate its applicability to road facilities.