PURPOSES: A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC baseMETHODS: This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and 1.1ℓ/m2 to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and 40 °C. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed.RESULTS: The test results indicated that the optimal application rate of RSC-4 and BD-Coat were 0.8ℓ/m2, 0.9 ℓ/m2, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and 20 °C, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of 40 °C.CONCLUSIONS: This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.
We performed temperature dependent current-voltage (I-V) measurements to characterize the electrical properties of Au/Al2O3/n-Ge metal-insulator-semiconductor (MIS) diodes prepared with and without H2O prepulse treatment by atomic layer deposition (ALD). By considering the thickness of the Al2O3 interlayer, the barrier height for the treated sample was found to be 0.61 eV, similar to those of Au/n-Ge Schottky diodes. The thermionic emission (TE) model with barrier inhomogeneity explained the final state of the treated sample well. Compared to the untreated sample, the treated sample was found to have improved diode characteristics for both forward and reverse bias conditions. These results were associated with the reduction of charge trapping and interface states near the Ge/Al2O3 interface.
전도성 고분자 PFO(Polyfluorene)에 양전극 ITO와 음전극으로 AI 를 추가한 단순한 양극성 구조의 ITO/PFO/Al 소자를 제작하였다. PFO에 BaTIO₃나노세라믹스 분말을 중량비로 0wt%, 10wt%, 20wt% 와 30wt% 로 달리한 4종류의 시편에 만들고, Keithley 사의 2400 Sourcemeter를 이용하여 0V에서 21V까지 DC전압을 인가하면서 소자에 흐르는 전류량을 관찰하였다. 수 나노 크기의 BaTIO₃분말의 첨가는 PFO/AI 계면에서의 전위장벽을 감소시켜 Fowler-Nordheim Tunneling이 시작되는 전압이 BaTIO₃가 첨가되지 않은 시편의 경우에 비하여 7V에서 최대 10V가 낮아진 결과를 얻었다. 소자에 흐르는 최대 전류값은 인가 전압 DC21V일 때 BaTIO₃첨가량에 비례하여 4배에서 5.5배까지 증가하였다. BaTIO₃의 첨가효과는 20wt% 이상 첨가된 경우 효과가 포화되기 시작하여, 30wt%의 BaTIO₃를 첨가한 시편의 전류량은 오히려 감소하였고 전류주입도 어려워지는 상반된 결과를 얻었다. 이것은 첨가한 나노 분말의 표면전하가 만드는 미세전계의 영향이 인접한 거리에서 서로 중첩되어 전류의 흐름이 오히려 감소하는 결과를 보인 것을 판단된다. 이로서 강유전체가 첨가된 전도성 고분자/금속 계면의 I-V 특성은 나노 세라믹스 분말의 표면전하가 만드는 국소미세전계의 영향을 받아 Trap Charge Limited Current 모델에 부합하는 결과를 가짐을 알 수 있었다.
본 연구는 실물형 인터페이스 개념과 특징을 설명하고 있는 선행연구를 대상으로 실물형 인터페이스디자인에 대한 특성을 토출하여 이를 토대로 실물형 인터페이스 디자인 가이드라인을 제안하였다. 도출된 인터페이스 디자인 가이드 라인의 특성은 물리적 조작성, 기기의 용이성 및 편리성, 지각적 표현성, 상황인지 및 공간성, 그리고 사회적 상호작용으로 구분되었으며 25개의 세부항목이 추출되었다. 개발된 가이드라인은 사용자와의 상호작용 측면이 강조된 것으로 이를 실제공간의 체험형 전시물들에 적용하여 평가함으로써 현 실물형 인터페이스 디자인의 특성을 분석하였다. 조사대상으로 선정된 국립과학 박물관의 전시 설치물들 중 실물형 인터페이스 평가가 가능하다고 판단되는 15개의 설치물을 대상으로 개발된 디자인 가이드 라인에 따라 전문가 평가를 하였다. 평가결과 신체모션을 이용한 인터페이스에 대한 점수가 가장 높았으며 이들은 상황인지 및 공간성 영역에서 높은 평가를 받았다. 상황인지 및 공간성은 새로이 확장된 실물형 인터페이스 특성으로 최근 그 중요성이 강조되고 있다. 분석 결과 대부분의 설치물들은 버튼과 조이스틱 위주의 물리적 조작성을 제공하는 설치물이 가장 많았으나 향후 시각, 청각, 촉각 등의 다감각 인터페이스나 사용자가 직접 설치장치들을 재배열하는 인터렉션 개발 등이 필요하였다. 본 연구는 실물형 인터페이스 디자인을 평가할 수 있는 기준을 제시하였다는데 그 의의가 있으며 실물형 인터페이스디자인이 적용된 전시 설치물들이 개발되고 적용됨에 있어 발전 방향을 모색하는데 도움을 줄 것으로 기대한다. 향후 개발된 실물형 인터페이스 디자인 가이드 라인에 따라 전문가 평가뿐만 아니라 실제 사용자들을 대상으로 하는 사용자 경험 평가가 병행되어야 할 것이다.
The micro-structural changes, strength characteristics, and micro-fractural behaviors at the joint interface between a Sn-4.0wt%Ag-0.5wt%Cu solder ball and UBM treated by isothermal aging are reported. From the reflow process for the joint interface, a small amount of intermetallic compound was formed. With an increase in the isothermal aging time, the type and amount of the intermetallic compound changed. The interface without an isothermal treatment showed a ductile fracture. However, with an increase in the aging time, a brittle fracture occurred on the interface due mainly to the increase in the size of the intermetallic compounds and voids. As a result, a drastic degradation in the shear strength was observed. From a microshear test by a scanning electron microscope, the generation of micro-cracks was initiated from the voids at the joint interface. They propagated along the same interface, resulting in coalescence with neighboring cracks into larger cracks. With an increase in the aging time, the generation of the micro-structural cracks was enhanced and the degree of propagation also accelerated.
Pressure ulcers are serious complications of tissue damage that can develop in patients with diminished pain sensation and diminished mobility. Pressure ulcers can result in irreversible tissue damage caused by ischemia resulting from external loading. There are many intrinsic and extrinsic contributors to the problem, including interface tissue pressure, shear, temperature, moisture, hygiene, nutrition, tissue tolerance, sensory and motor dysfunction, disease and infection, posture, and body support systems. The purposes of this study were to investigate the relationship between buttock interface pressure and seating position, wheelchair propulsion speed. Seated-interface pressure was measured using the Force Sensing Array pressure mapping system. Twenty subjects propelled wheelchair handrim on a motor-driven treadmill at different velocities (40, 60, 80 m/min) and seating position used recline (, , ) with a wheelchair simulator. Interface pressure consists of average (mean of the pressure sensor values) and maximum pressure (highest individual sensor value). The results of this study were as follows; No significant correlation in maximum/average pressure was found between a static position and a 40 m/min wheelchair propulsion (p>.05). However, a significant increase in maximum/average pressure were identified between conditions of a static position and 60 m/min, and 80 m/min wheelchair propulsion (p<.05). No significant correlation in maximum pressure were found between a recline (neutral position) and a , , or recline of the wheelchair back (p>.05). No significant difference in average pressure was found between conditions of a recline and both a and recline of wheelchair back. However, a significant reduction in average pressure was identified between conditions of a and recline of wheelchair back (p<.05). This study has shown some interesting results that reclining the seat by reduced average interface pressure, including the reduction or prevention in edema. And interface pressure was greater during dynamic wheelchair propulsion compared with static seating. Therefore, the optimal seating position and seating system ought to provide postural control and pressure relief. We need an education on optimal seating position and a suitable propulsion speeds for wheelchair users.
In order to investigate the effect on morphology of Rhizopus oryzae and production of lactic acid, various interface materials were used. Morphology of fungal showed sheet and flock when resin was added. The production of lactic acid was increased dramati
본 연구는 산림 내 주요 시설물 주변에 자생하는 고추나무, 생강나무, 싸리나무, 산초나무, 옻나무의 잎 5종을 대상으로 관목류의 연소특성을 분석하고자 착화특성과 전파특성을 실험 한 결과, 발화온도의 경우 고추나무 잎(214℃)이 가장 낮아 발화위험성이 가장 높은 것으로 나타났으며, 착화시간 또한 고추나무 잎이 3초로 가장 빠르게 나타났다. 화염유지시간의 경우 옷나무 잎(286초)이 가장 긴 것으로 나타났다. 또한, 전파특성 실험결과 고추나무 잎이 총열방출량(63.9MJ/m2)과 평균열방출율(34.5KW/m2)이 가장 높은 것으로 측정되었고, 최대열방출량은 산초나무 잎(102.1KW/m2)이 가장 높았다. 또한, 연료별 탄소배출량 분석 결과 평균CO2방출량이 가장 큰 수종은 옻나무 잎(1.15kg/kg)이며, 평균CO2방출량이 가장 큰 수종은 생강나무 잎(0.082kg/kg)으로 나타났다.
The key findings of the paper are as follows: Numerical parameters study of the interface-element was carried out, the friction angle depends on rockfill zone material and normal and shear stiffness coefficient of the two materials (concrete and rockfill), the average values were found to be the most appropriate.
The environmental changes related to hypoxic water mass were investigated at Gamak bay in summer times, June, July and August 2006. The hypoxic water mass was found, in first, at the northern area of Gamak bay on 27 June. This water mass has been sustained until the end of August and disappear on 13 September. In Gamak bay, the hypoxic water mass was closely related to geography. During the formation of oxygen deficiency, changes in dissolved nutrients was studied and found that on surface layer and lower layer, DIN were 0.80 μM~19.8 μM(6.03 μM) and 1.13 μM~60.83 μM(10.66 μM), and DIP were 0.01 μM~0.92 μM(0.24 μM), and 0.01 μM~3.57 μM(0.49 μM), respectively, far higher distribution on lower layer of the water where hypoxic water mass was occurred. The configuration of phosphorus was analyzed to figure out the possibility of release of phosphorus from sediments. It was found that the Labile-Phosphorus, which is capable of easy move to water layer by following environmental change was found more than 70%. Therefore, in Gamak bay, it was found that the possibility of large amount of release of soluble P into the water, while hypoxic water mass was occurred in deep layer was higher. It is suggested that DIP in the northern sea of Gamak bay mainly sourced from the soluble P from lower layer of the waters where hypoxic water mass was created more than that from basin. However, existence form of phosphorus in sediments during normal times, not during creation of hypoxic water mass, needs further study.