본 연구는 고상폐기물인 준설토와 혼합물질인 점토 및 유리프리트를 이용하여 기능성을 갖는 건축자재용으로의 재활용 가능성을 검토하고자 실시되었다. D항만 준설토의 중금속 함량은 Zn이 526.0~13,150.1 mg/kg의 범위를 나타내는 등 심한 오염상태이었다. 준설토(30P)의 주요 화학조성은 SiO₂(48.30 wt%), Al₂O₃(16.60 wt%), CaO(10.10 wt%), Fe₂O₃(7.75 wt%)이었으며, 점토는 SiO₂가 70.82 wt%, Al₂O₃ 18.78 wt%, 유리프리트는 SiO₂가 71.75 wt%, CaO 13.99 wt%, Na₂O 8.51 wt% 함유되어 있었다. 준설토를 점토에 10~40 wt% 첨가한 후 1,000℃와 1,100℃에서 소성한 시편의 압축 강도는 각각 132.6~178.5 kgf/cm2와 581.2~793.7 kgf/cm²이었다. 준설토가 40 wt% 첨가된 경우 (SC46) 1,100℃에서 소성한 경우가 793.7 kgf/cm²로 1,000℃에서 소성한 경우의 153.0 kgf/cm² 보다 5배 이상 높게 나타나 1,100℃ 온도가 소성에 더 적합한 것으로 판단되었으며, KS 1종벽돌 기준을 만족시켰다. 또한, 시편의 용출시험 결과 폐기물관리법상 지정폐기물 판정기준치를 크게 하회하는 것으로 나타났다.
In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.
본 연구는 수입사료가 우리나라 농업환경의 오염부하에 미치는 영향을 파악하고자 2005년을 기준년도로 하여 수입사료 품목별 수입량 및 비료성분량, 수입사료로 인한 가축 사양단계에서 비료성분 발생량을 추산하고, 농경지 작물별 재배면적과 양분요구도 분석을 통해 수입사료로 인한 농경지의 오염부하도를 분석하였다. 수입사료를 통해 국내로 도입되는 비료성분량은 질소 371천톤, 인산 140천톤, 가리 143천톤, 주요 수입품목인 곡류 및 식물성 유박류에서 유래하는
Since the Framework Act on Resource Circulation was enacted in 2018, the government should establish a National Resource Circulation Master Plan every 10 years, which defines mid- to long-term policy goals and directions on the efficient use of resources, prevention of waste generation and recycling of waste. In addition, we must set mid- to longterm and stepwise targets for the final disposal rate, recycling rate (based on sorted recyclable materials and recycled products), and energy recovery rate of wastes, and relevant measures should be taken to achieve these targets. However, the current industrial waste (IW) statistics have limitations in setting these targets because the final disposal rate and recycling rate are calculated as the ratio of the recycling facility input to the IW generation. In this study, the material flow from the collection stage to the final disposal of industrial waste was analyzed based on the generation of 2016, and the actual recycling amount, actual incineration amount, final disposal amount and their rates were calculated. The effect on the recycling, incineration and final disposal rates was examined by changing the treatment method of nonhazardous wastes from the factory and construction and demolition wastes, which were put in landfills in 2016. In addition, the variation of the waste treatment charge was investigated according to the change of treatment methods. The results of this study are expected to be effectively used to establish the National Resource Circulation Master Plan and industrial waste management policy in the future in South Korea.
급증하는 폐기물량을 극복하기 위해 국내에서는 1991년부터 재활용 정책을 적극적으로 도입하여, 현재 국가 통계로는 세계 1위의 재활용율을 보유하고 있다. 또한, 2016년에는 폐기물 목록을 재정비하였고, 그간의 재활용 용도 및 방법에 대한 제도를 전면적으로 혁신하여 네가티브 재활용 관리제도를 도입하였다. 하지만, 현행 제품 기준은 폐기물 재활용으로 인한 사람의 건강이나 환경에의 유해성을 적정하게 제어하기에는 미흡한 상황으로, 대부분의 제품기준은 폐기물 원료로 사용하는 것을 전제하지 않고 있어서 중금속, 유독물질 등의 유해물질 기준이 설정되어 있지 않다. 특히, 골재제품의 경우에는, 실질적으로 토양, 지하수 등의 자연매체와 직접적으로 접촉하여 환경오염의 우려가 매우 높음에도 불구하고 입도, 강도 등 물리적 기준 위주의 제품기준만이 설정되어 있는 상태이므로, 폐기물 자체 혹은 제조 과정의 특성에 따라 위해 우려가 높은 재활용제품과 원료에 대한 제품기준을 마련하고, 기준 초과 시 이의 제조․유통을 금지․제한함으로써 재활용 확대에 따른 환경안정성을 확보할 필요가 있다. 따라서 본 연구에서는 재활용 확대에 따른 환경안정성을 확보하기 위해 폐기물관리법 시행규칙 별표4의2에서 정한 재활용 유형 중 매체접촉형인 R-4-2, R-5, R-6, R-7을 대상으로 인체 및 환경 유해성 정도를 고려한 매체 접촉형 재활용 유형별 물질 및 재활용 제품군을 도출하고, 매체 접촉형 재활용 원료인 폐기물의 성상 및 유해성 정도에 따른 원료 기준 및 재활용 제품에 대한 유해성분 용출 및 함량 기준을 설정하였다.
우리나라에서는 자원순환기본법이 2015년 5월 29일에 공포되어 2018년 1월 1일부터 시행된다. 이 법에 따라 국가의 중장기 단계별 자원순환목표를 달성하기 위해 시・도와 산업폐기물 배출자를 대상으로 자원순환 성과관리제가 도입된다. 그 대상 주체는 최종처분율, 순환이용률의 목표의 이행계획을 제출하고 목표를 이행한 후에 그 이행실적을 보고해야 한다. 그러나 현재 국내에서는 폐기물 종류별, 업체별 순환이용률을 산정하기 위한 통계 기반이 미흡하다. 이 성과관리제의 성공적 실시를 위해서는 일선 업체별 폐기물 종류별 폐기물의 순환이용 실태 파악과 자원순환률 산정방법의 정립이 필요하다. 현재 ‘전국 폐기물 발생 및 처리현황’통계는 1차 재활용시설로 반입된 폐기물이 전량 재활용(순환이용)된 것으로 간주하여 재활용률을 산정하고 있다. 폐기물에 따라서는 1차 재활용시설에서 재생원료 및 재활용제품이 생산되는 경우도 있으나 여러 단계의 가공 및 정제 공정을 거쳐 재생원료나 재활용제품이 생산되는 경우도 있고, 이들 재활용 공정에서 이물질 제거와 공정손실이 발생하므로 이를 고려하여 재활용률(순환이용률)을 산정하여야 한다. 본 연구에서는 재활용 폐기물의 특성(물리・화학적, 함수율 등)과 재활용공정을 고려하여 그 유형을 구분하고, 회수된 재활용 폐기물의 전 공정에 대한 물질흐름을 조사하여 실제로 천연자원을 대체하여 순환 이용된 유효재활용률을 산정하였다. 현재 재활용률의 산정방법에 대하여 국제적으로 통일된 방법이 없기 때문에 재활용 폐기물의 투입 시점, 1차 해체・선별하여 재활용 원료로 판매하는 시점, 최종 재생원료 또는 재활용품 생산시설의 투입 시점과 최종 재생원료와 재활용품의 제조완료 시점으로 구분하여 다양한 관점에서 재활용률을 산정하여 이를 비교・분석하였다. 이를 통하여 물질재활용에 대하여 폐기물 특성과 재활용 공정을 고려하여 합리적인 물질재활용률 산정방법을 제시하였다. 또한 다양한 재활용 공정의 물질흐름 분석을 통하여 폐기물의 유효재활용률의 향상방안과 재활용 정책의 기초자료를 수집・제시하였다. 본 연구 결과는 향후 자원순환 성과관리제도의 정착에 크게 기여할 것으로 판단된다.
최근 원자재 가격 상승 및 자원부족 문제가 높아지면서 자원의 희소성과 특정 국가의 생산 집중도가 높아 자원보유국의 무기화 경향으로 인해 자원에 대한 공급 불안정은 점차 증가되고 있다. 이에 전 국가적으로 자원의 확보를 위해 자원순환에 대한 관심은 점점 높아지고 있으며, 특히 매년 발생되는 폐기물을 자원화 하는 폐기물 재활용 정책이 강화되면서 재활용에 대한 관심과 기술개발에 대한 활성화가 더욱더 필요한 전망이다. 우리나라는 대부분 광물자원을 대부분 수입(약 97%)에 의존하고 있기 때문에 더욱더 재활용에 대한 산업이 증가되고 있지만 폐기물 자체도 수입에 의존하고 있어 국제 협약과 관련되어 폐기물 수출・입 시 부정적 관리나 유통되는 부분에 대한 관리실태 파악과 국내에서 처리된 폐기물의 물질별 흐름파악이 필요하게 되었다. 수출・입 폐기물 중 국내에서 금속 회수를 위한 재활용량이 가장 높은 폐납산배터리를 선정하여 재활용에 대한 관리실태 파악 및 수출・입 실태를 조사하여 재활용된 폐납산배터리의 물질흐름도에 대해 조사하였다. ‘15년 국내 자동차 등록 대수는 2천만 대 이상이며, 국내등록양이 년 100∼130만대 이상이 증가되고 있다. 국내에서의 발생되는 폐납산배터리는 자동차 노후배터리 교체 및 폐차로 인해 주로 발생되며, 일부 산업용 배터리와 배터리 제조회사의 불량품 및 수입제품의 완구류에서 적은 양이 매년 국내에서 발생되고 있다. 해외에서의 자동차 및 산업용 폐납산배터리의 수입량은 매년 증가되고 있으며, ‘15년 기준 410천톤 이상 국내로 수입되어 재활용 처리되어지고 있다. 그러나 국내로 수입되어 재활용 처리되면서 회수되는 금속자원 및 기타자원에 대한 통계가 명확하게 파악되지 못하고 있다. 본 연구는 국내로 수입되는 폐납산배터리의 재활용 회수 기술 등을 조사하고 수출・입 및 국내 발생량을 산정하여 국내에서 소비 및 수출되는 연괴(납: Pb)의 양과 폐납산배터리를 재활용하여 회수된 폐금속자원 등의 물질흐름을 파악하여 국내에서의 연간 폐납산배터리의 발생량을 추계하고 납산배터리의 재활용을 통한 국내 금속자원 등의 국내 물질별 흐름도 및 국내 대체율(Replacement rate)을 조사하였다.
Material flow analysis (MFA) of recycling material and of mercury from linear-type spent fluorescent lamps (SFLs was performed to estimate the material composition of the chain recycling process by an input-output approach. The recycling process system for linear-type SFLs was established using an end-cutting system, a hammer crusher, a screen separation system, a mercury distillation system, and an activated carbon adsorption component. From the results of the MFA of lineartype SFLs, 92% of materials used in linear-type SFLs such as glass, aluminum, and phosphor powder can be recycled. For MFA of mercury, the mercury content in the phosphor powder was the highest among material compositions tested and the total mercury amount in the recycling materials from 1 ton of SFLs was estimated to be 75.43 g. In the recycling process system for linear-type SFLs, the mercury amount in the vapor phase was analyzed and found to be 2228 mg in the endcutting system, 172 mg in the hammer crusher, and 2585 mg in the screen separation system. The total mercury amount in the vapor phase was estimated to be 4985 mg, which was only 6.22% of the total mercury amount emitted from the recycling process system. Hence, it was estimated that the MFA of the total mercury amount obtained from the vapor phase and the recycling materials of 1 ton of SFLs using the recycling process system was 80.175 g.
In this study, the recycling processes of construction and demolition waste (C&D waste) were analyzed, and its national recycling rate was determined using material flow analysis (MFA). Available statistical data provided by Ministry of Environment and Korea Environment Corporation were used for the MFA study. The collected data were carefully examined and validated by field investigations. System boundary for MFA covered from waste generation from construction sites to final disposal in 2013. The field investigation showed that recycled aggregate is produced through mechanical shredding, separation, and screening processes of C&D waste. The production efficiency (or process yield) was estimated to be approximately 81.2% on average. The foreign materials in the waste accounted for 18.8% by weight. The separated impurities were sent to recycling facilities, incineration facilities, or landfill sites, depending on the physicochemical characteristics. Efficiency of recycling facilities and the statistical data were integrated to estimate the national actual recycling rate, which turned out to be 87.7% in 2013. Approximately 49.1% of the construction-related waste was recycled as recycled aggregate for concrete production and road base layer for asphalt pavement. Based on the result of MFA, there is 9.8% difference between the actual recycling rate in this study and reported recycling rate by national statistics. In the future, more various C&D waste treatment and disposal facilities, along with aggregate recycling facility, should be investigated to verify the actual recycling rate determined by this study. Statistical accuracy should be further refined through additional field investigations. Our findings can be applicable to development of recycling policies and best management practices for C&D waste streams.
현행 재활용기준비용은 2002년 연구용역 결과를 토대로 산정된 것으로 당시에 비하여 재활용 여건과 제도의 변화가 있었기 때문에 변화된 여건을 감안한 재활용 기준비용의 재산정이 필요하다. 재활용기준비용이 분담금 및 지원비의 기준으로써 역할을 하기 위해서는 회수와 재활용 단계를 구분한 단계별 순비용이 필요하다. 따라서 본 연구에서는 회수 및 재활용 시스템의 각종 유형 및 비용변동 요인 등의 분석을 위해 재활용 품목별 특성을 고려하여 물질흐름도를 통해 재활용 표준 프로세스 수립에 목적을 두고 있다. 재활용가능자원의 회수와 관련된 영역은 크게 지자체 영역과 민간영역으로 구분된다. 지자체 회수영역은 단독주택 지역을 대상으로 한 혼합수거 및 종합선별을 하는 흐름이며, 회수 및 선별여건이 열악하고 많은 비용이 소요된다. 그리고 선별 후 발생하는 수익 대비 비용이 많이 들어가며 지자체의 재정으로 부담하고 있는 실정이다. 민간영역은 공동주택 등에서 배출되는 재활용품의 회수영역이며 단독주택 지역의 재활용품이 동네고물상을 거쳐 이 영역으로 들어올 수도 있다. 이 영역의 회수 시스템은 민간업체간 자율적인 경쟁과 계약에 의하여 작동하고 있기 때문에 매우 복잡한 체계를 가지고 있으나, 크게 종합선별시스템과 전문선별시스템으로 구분할 수 있다. 또한 재활용가능자원의 재활용 영역은 품목에 따라서 재활가능자원의 특성을 감안한 분석을 할 필요가 있다. 플라스틱은 재질(단일재질, 복합재질, PVC 등) 및 재활용 방법(재생원료, 재생제품, RFP, 유화 등)에 따라 구분하며 PVC의 경우 기준 수액백 위주의 비용산정이었기 때문에 기타 가정발생 포장재의 PVC에 대한 별도 비용산정이 필요하다. EPS의 경우 선별단계에서 잉코트 생산이 되고 있으며 통상적으로 회수경로가 다른 수산물 양식부자와 전자제품 역회수 물량, 농수산시장 등 다량발생원에 대한 별도 분석도 필요하다.
The government of each country is making a policy of expanding recycling of wastes and waste-to-energy to mitigate the greenhouse gas emissions to cope with climate change. This paper attempts to analyze the economic effects of waste disposal & materials recycling services (WDMRS) sector using 2012 input-output (IO) table published in 2014. To this end, we deal with three sectors: waste disposal, materials recycling services, and WDMRS sectors. More specifically, the production-inducing effect, value-added creation effect, and employment-inducing effect of the WDMRS sector are investigated based on demand-driven model. The supply shortage effect and the price pervasive effect are also examined employing supply-driven model and Leontief price model, respectively. The results show that the production or investment of 1.0 won in the WDMRS sector induces the production of 1.9324 won and the value-added of 0.7217 won in the national economy. Moreover, the production or investment of 1.0 billion won, supply shortage of 1.0 won, and a price increase of 10.0% in the WDMRS sector touch off the employment of 15.2462 persons, production loss of 2.0589 won, and an increases in overall price level by 0.0699%, respectively. This quantitative information can be usefully utilized inassessment of the WDMRS sector-related investment and policy.
Food waste, a putrescible form of waste, comprised of 30% of the total municipal solid waste stream in Daejeon Metropolitan City (DMC) in 2012. Proper management of food waste is a challenging task for local government. This study was conducted to determine material flows when treated food waste in various recycling facilities. Material flows in the recycling processes were collected by site surveys, field trips and discussion with operators and governmental employees. Material flow analysis (MFA) was conducted to quantify the flow of food waste from generation to disposal for the year 2012. MFA along with its mass transfer coefficients were determined based on the inputs, outputs and waste fluxes. According to the mass transfer coefficient results, treatment efficiency for the dry and wet feed manufacturing facility was found to be higher than other treatment facilities. Water consumption was higher for the composting site, resulting in large volume of wastewater (mass transfer coefficient 1.539). While large amounts of screening materials such as plastic, chopsticks, aluminum foils, and bottle caps were generated at the composting site, mass transfer coefficients (0.312) at the dry and wet feed facility were relatively high, implying effective treatment of food waste occurring. The results of this study help to facilitate waste management policy decision-makers in developing effective food waste management techniques in DMC.
This paper presents the estimation of actual recyclable amounts and the evaluation of waste oil recycling processes atrecycling facilities using material flow analysis (MFA). The estimation of actual recycling rates through the processes ofwaste lubricating oils is a very important subject not only in the point of view oil recycling efficiency by energy conversionprocesses but also in the perspective of the recycling technology level. In this study, the recycling processes and recyclingrates of waste lubricating oil recycling facilities were evaluated by using a MFA approach, a total of 10 site visits anda total of 30 site questionnaires in Korea. The MFA methodology based on mass balance approach applied to identifythe inputs and outputs of waste oils during the recycling processes at waste oil recycling facilities. It is necessary todetermine the composition and flows of the input materials to be recycled and foreign substances in a waste recyclingfacility. A complete understanding of the waste flows in the processes along with the site visit and data surveys for therecycling facilities was required to develop a material flow for the processes and determine the process yield by differenttreatment methods (chemical distillation, vacuum distillation and high temperature pyrolysis). The results show that onaverage the process yields for chemical distillation, vacuum distillation, and high temperature pyrolysis were 89.9±7.7%,77.9±16.1%, and 57.9±9.3%, respectively. During the chemical distillation method, water in waste oils was a majorfraction (>50%), while the vacuum distillation method resulted oil large amounts of oil sludge produced during therecycling process. The process yields for different treatment methods depended upon several factors including the qualityof incoming waste oils, the type and operating conditions of recycling processes that are applied to. Based on the materialflow analysis in this study, the actual recycled amount of waste oil was estimated to be approximately 260,809 ton in 2011.
This paper presents the actual recycling rates and recycling processes of waste plastic recycling facilities using material flow analysis. Determination of actual recycling rates through the processes of waste plastics is a very important subject not only from the point of plastic recycling efficiency energy conversion but also from the perspective of the recycling technology level. In this study, the recycling processes and recycling rates of waste plastic recycling facilities were evaluated by the MFA analysis based on 14 site visits and 25 questionnaires. The MFA methodology based on mass balance approach applied to identify the inputs and outputs of recyclable plastic materials in the recycling processes at recycling facilities. It is necessary to determine the composition and flows of the input materials to be recycled in a recycling facility. A complete understanding of the waste flows in the processes along with the site visit and data surveys for the recycling facilities was required to develop a material flow for the processes and determine the actual recycling rate. The results show that the average actual recycling rates for the recycling facilities by the site visit and the questionnaire was found to be approximately 87.5 ± 7.1% and 84.3 ± 14.5%, respectively. The recycling rates depended upon several factors including the quality of incoming waste plastics, the type and operating conditions of recycling processes, and the type of final products. According to the national statistics, the recycling rate of waste plastics was about 53.7%, while the actual recycling rate at national level was estimated to be approximately 45.1% by considering the recycling performance evaluated as well as the type of recycling process applied. The results of MFA for the recycling processes served as a tool to evaluate the performance of recycling efficiency with regard to the composition of the products during recycling. They may also support the development of the strategy of improvement of recycling processes to maximize resource recovery out of the waste plastic materials.