Pyrochemical processing and molten-salt reactors have recently garnered significant attention as they are promising options for future nuclear technologies, such as those for recycling spent nuclear fuels and the next generation of nuclear reactors. Both of these technologies require the use of high-temperature molten salt. To implement these technologies, one must understand the electrochemical behavior of fission products in molten salts, lanthanides, and actinides. In this study, a rotating-disk-electrode (RDE) measurement system for high-temperature molten salts is constructed and tested by investigating the electrochemical reactions of Sm3+ in LiCl–KCl melts. The results show that the reduction of Sm3+ presents the Levich behavior in LiCl–KCl melts. Using the RDE system, not only is the diffusion-layer thickness of Sm3+ measured in high-temperature molten salts but also various electrochemical parameters for Sm3+ in LiCl–KCl melts, including the diffusion coefficient, Tafel slope, and exchange current density, are determined.
악성 간문부 담관 폐쇄(malignant hilar biliary obstruction, MHBO) 치료를 위해 시행되는 내시경 담관배액술은 후속 치료, 생존율 및 환자 삶의 질 향상에 필수적이다. 그러나 간문부 담관의 복잡한 해부학적 특징으로 인해 시술의 난이도가 높고 시술 관련 우발증의 위험이 있다. 본 고에서는 완전 피막형 자가팽창성 금속 스텐트(fully covered self-expandable metal stent, fcSEMS)를 이용한 나란한 양측 삽입 담관배액술을 시행 후 근위부 담관내 이탈(proximal stent migration)이 발생한 증례를 보고한다. 현재까지 MHBO에 대해서는 어떤 종류의 스텐트를 어떠한 방법으로 시술할지에 대하여 충분한 근거가 정립되어 있지는 않다. 그렇지만 본 증례와 같이 fcSEMS를 사용할 경우 스텐트 이탈 위험성이 ucSEMS보다 높다는 것은 인지하고 있어야 하겠으며, 환자 진료 시 이러한 사항을 고려하여 적절한 대비가 필요하겠다. 향후 이러한 스텐트 이탈을 줄일 수 있는 다양한 예방법이 고안된다면 많은 도움이 될 것으로 기대 된다.
Graphene-based materials modified with transition metals, and their potential utilization as hydrogen storage devices, are extensively studied in the last decades. Despite this widespread interest, a comprehensive understanding of the intricate interplay between graphene-based transition metal systems and H2 molecules remains incomplete. Beyond fundamental H2 adsorption, the activation of H2 molecule, crucial for catalytic reactions and hydrogenation processes, may occur on the transition metal center. In this study, binding modes of H2 molecules on the circumcoronene (CC) decorated with Cr or Fe atoms are investigated using the DFT methods. Side-on (η2-dihydrogen bond), end-on and dissociation modes of H2 binding are explored for high (HS) and low (LS) spin states. Spin state energetics, reaction energies, QTAIM and DOS analysis are considered. Our findings revealed that CC decorated with Cr (CC-Cr) emerges as a promising material for H2 storage, with the capacity to store up to three H2 molecules on a single Cr atom. End-on interaction in HS is preferred for the first two H2 molecules bound to CC-Cr, while the side-on LS is favored for three H2 molecules. In contrast, CC decorated with Fe (CC-Fe) demonstrates the capability to activate H2 through H–H bond cleavage, a process unaffected by the presence of other H2 molecules in the vicinity of the Fe atom, exclusively favoring the HS state. In summary, our study sheds light on the intriguing binding and activation properties of H2 molecules on graphene-based transition metal systems, offering valuable insights into their potential applications in hydrogen storage and catalysis.
High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200°C, 1250°C, and 1275°C. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150°C) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275°C MIM process. The HIP process can improve the quality of the alloy.
The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.
Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.