검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The secondary growth model for Salmonella was developed based on the artificial neural network (ANN) with data collected from ComBase and FoodData Central. In addition to the existing secondary model variables (temperature, pH, Na+, and water contents), more input variables (sugar, carbohydrate, lipid, and protein contents) were considered. The output variables were microbial growth parameters (lag phase duration [l] and maximum growth rate [mmax]). A commercial ANN program (NeuralWorks Predict) was utilized with training at 80%, validation at 10%, and test data at 10%. ANN models were created using all data and cleansed data. Using the cleansed data, the training/testing root mean square error (RMSE) for mmax improved from 0.14/0.16 to 0.11/0.14, whereas the RMSE for l was still not acceptable, from 11.94/33.03 to 7.09/4.18. The l data were divided into two ranges with high and low goodness of fit, whereas the ANN model for each field was built, resulting in an optimally low RMSE.
        4,000원
        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.
        4,500원
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기술 트렌드가 증가함에 따라, 엄청난 양의 데이터가 생성되고 있습니다. 많은 양의 데이터가 소비되는 기술 분야 중 하나는 컴퓨터 비전이다. 인간은 기계와 비교할 때 시각에 영향을 미치는 표정, 조명 또는 시야각과 같은 외부 조건에서도 얼굴이나 사물을 쉽게 감지하고 인식할 수 있다. 그 이유는 그것과 관련된 높은 차원 의 데이터 때문이다. 데이터 차원성은 모든 관측치에서 측정되는 변수의 총 수를 말합니다. 이번 사업은 안 면인식시스템에 적합한 다양한 차원감소 기법을 비교하고 조도가 다양한 안면이미지로 구성된 다양한 데이 터세트로 테스트해 모델의 정확도 향상에 도움이 되는 기법의 앙상블 모델을 제안하고 성능을 측정하는 것 이 목적이다.렉스 배경과 표현. 제안된 앙상블 모델은 주성분 분석(PCA)과 로컬 선형 임베딩(LLE)이라는 두 가지 차원 감소 기술의 혼합에서 벡터를 추출하고, 이를 밀도 높은 컨볼루션 신경망(CNN)을 통해 전달하여 야생 면(LFW) 데이터 세트의 얼굴을 예측한다. 이 모형은 0.95의 검정 정확도와 0.94의 검정 F1 점수로 수행 됩니다. 제안된 시스템은 시스템이 얼굴을 예측할 수 있는 제안된 앙상블 모델과 통합된 웹캠에서 라이브 비 디오 스트림을 캡처하는 플라스크를 사용하여 개발된 웹 앱을 포함한다.
        4,600원
        6.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문에서는 공용중인 구조물의 상시 계측 자료를 사용한 온라인 유한요소 모델 업데이트 방법을 제안한다. 일반적인 최적화 방법에 기반한 기존의 방법은 최적해를 찾기까지 반복적으로 고유치 해석을 수행해야 하므로 상시 업데이트에 사용하기에는 효과적이지 못하다. 제안하는 방법은 별도의 오프라인 작업이나 사용자의 개입이 없이 자동화된 과정으로 계측과 동시에 온라인 유한요소모델 업데이트를 수행할 수 있는 새로운 방법이다. 자동화된 Cov-SSI 알고리즘을 통해 구조물의 진동 계측 신호로부터 고유진동수 및 모드 형상을 식별하고, 이를 다시 역 고유치 신경망에 입력하여 최종적으로 업데이트된 유한요소 모델의 파라미터를 추정한다. 풍하중을 받는 20층 전단 빌딩 구조 모형에 대한 수치예제를 통해 제시한 방법이 자동으로 연속적인 유한요소모델 업데이트를 할 수 있었음을 확인하였다. 또한, 계측 도중 구조물의 특성이 변화하는 시나리오에 대한 예제에서 구조물의 변화가 일어나는 시점과 변화 후 변동된 구조 모델 파라미터 값을 성공적으로 추정할 수 있음을 확인하였다.
        4,000원
        8.
        2018.04 구독 인증기관 무료, 개인회원 유료
        The contemporary high-tech structures have become enlarged and their functions more diversified. Steel concrete structure and composite material structures are not exceptions. Therefore, there have been on-going studies on fiber reinforcement materials to improve the characteristics of brittleness, bending and tension stress and others, the short-comings of existing concrete. In this study, the purpose is to develop the estimated model with dynamic characteristics following the steel fiber mixture rate and formation ration by using the nerve network in mixed steel fiber reinforced concrete (SFRC). This study took a look at the tendency of studies by collecting and analyzing the data of the advanced studies on SFRC, and facilitated it on the learning data required in the model development. In addition, by applying the diverse nerve network model and various algorithms to develop the optimal nerve network model appropriate to the dynamic characteristics. The accuracy of the developed nerve network model was compared with the experiment data value of other researchers not utilized as the learning data, the experiment data value undertaken in this study, and comparison made with the formulas proposed by the researchers. And, by analyzing the influence of learning data of nerve network model on the estimation result, the sensitivity of the forecasting system on the learning data of the nerve network is analyzed.
        3,000원
        9.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yield is a very important measure that can expresses simply for productivity and performance of company. So, yield is used widely in many industries nowadays. With the development of the information technology and online based real-time process monitoring
        4,000원
        10.
        1999.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        프레임 구조물의 접합부 손상을 평가하기 위하여 접합부 손상모델과 신경망기법을 이용한 손상평가기법을 제안하였다 구조물의 보-기둥 접합부를 접합부의 회전강성을 갖는 등가의 스프링요소로 표현하였으며 접합부의 손상도는 손상 전 후의 고정도계수의 감소비율로 정의하였다 손상평가를 위하여 다층퍼셉트론즈 신경망 기법을 제안하였으며 손상평가성능을 향상시키기 위하여 부분구조추정법, 노이즈첨가학습, 자료교란법등의 기법을 적용하였다 10층 프레임 구조물에 대한 수치 예제해석과 2층 프레임 구조물에 대한 실험 예제해석을 통하여 제안기법의 유용성을 평가하였다 계측지점이 일부분으로 제한되어 있고 계측자료에 심한 계측오차가 포함되어 있는 경우에도 손상평가가 합리적으로 이루어질수 있음을 알 수 있었다.
        4,300원
        11.
        1997.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대량의 복잡한 비선형적인 관계도 단순화의 과정 없이 연관 관계를 자체 조직화 할 수 있는 인간의 뇌와 가장 유사한 병렬 연산 모델인 인공 신경 회로망을 구조 해석 분야에 도입하였다. 본 논문은 스터브 거더의 거동 예측을 위한 신경망 근사해석 모델 개발을 궁극적인 목적으로 하는 기초적 연구로서, 단순 보의 처짐 문제와 같은 정확해를 구할 수 있는 문제로부터 신경망 근사해석모델의 원형 (prototype)을 제시하고 검증하는데 목적이 있다.
        4,000원
        12.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 본 연구논제(2007)에서 개발된 COMBINE-GRNNM-GA(Type-1)으로부터 최적형태의 구조를 가진 모형을 구성하고, 입력층노드의 기상인자를 제거하기 위하여 불확실성 분석을 실시하였다. 훈련과정중에 가장 최소의 평활인자를 가진 입력층변수는 COMBINE-GRNNM-GA(Type-1)에서 제거되었으며, 변형된 COMBINE-GRNNM-GA(Type-1)은 기상학적 변수의 새로운 최소 평활인자를 구하기 위하여 재훈련된다. 최소 평활인
        13.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        본 연구의 목적은 결측 혹은 미계측 증발접시 증발량과 우리나라에서 계측되고 있지 않은 알팔파 기준증발산량의 산정을 위하여 유전자 알고리즘이 내재된 일반화된 회귀신경망모형을 개발하고 적용하는데 있다. 우리나라에서는 장기간동안 증발산계를 이용하여 알팔파 기준증발산량의 관측이 시행되지 않고 있으므로, 본 연구에서는 Penman-Monteith(PM) 공식을 이용하여 산정된 값을 계측된 알팔파 기준증발산량으로 가정하였다. 본 연구를 통하여 최적 증발접시 증발량
        14.
        2003.04 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 낙동강 상류유역의 병렬 다목적댐군인 안동 및 임하다목적 댐의 장기간 유입량을 산정하는데 공간추계 신경망모형이 사용되었다. 공간추계 신경망모형은 역전파 알고리즘으로 LMBP와 BFGS-QNBP를 각각 사용하였다. 공간추계 신경망모형의 구조는 입력층, 은닉층 및 출력층의 3개의 층과 차례대로 8-8-2개의 노드로 구성되어 있다. 입력층 노드는 안동 및 임하다목적 댐의 월평균유입량, 월면적강우량, 월별 증발접시 증발량과 월평균기온으로 구성되어
        15.
        2000.10 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용