이 연구를 통해 우리나라에서 복원 중인 멸종위기종인 반달가슴곰(Ursus thibetanus ussuricus)의 식별을 위한 새로운 분자 marker 체계를 개발하였다. 전장 유전체 서열 정보를 사용하여, 20개의 새로운 미세부수체(Microsatellite, MS) marker가 다중 중합효소연쇄반응(PCR)을 기반으로 하는 유전자형 분석을 통해 개발되었다. 개발된 MS marker 20종의 대립유전자 수는 3개에서 10개였으며, 평균 대립유전자 수는 6.05개였다. 관측 이형접합도(Hobs), 기대 이형접합도(Hexp), 다형정보량(PIC)의 평균은 각각 0.683, 0.715, 0.658로 나타났다. Fis 값은 –0.385에서 0.438의 범위에 있었고, 평균은 0.052였다. 무작위 교배(PIrandom), 반형매 교배(PIhalf-sib), 전형매 교배(PIfull-sib)에서의 동일개체출현율은 각각 1.58×10-18, 2.79×10-14, 4.75×10-8를 나타내었다. 이 연구의 결과는 새로운 MS marker 체계가 높은 유전적 다양성과 낮은 PI 수치를 가지고 있어, 야생에서 출현하고 있는 반달가슴곰들을 식별하거나 새끼 곰의 부모 추적에 유용하게 사용될 것으로 생각된다. 이 분자 marker 체계는 한국에서 복원 중인 반달가슴곰 개체군의 관리와 유전적 다양성 증진에 기여할 수 있을 것으로 사료된다.
A study of intertidal habitats on Jejudo Island, Korea led to the identification of two new species, Desmoscolex (Desmoscolex) jejuensis sp. nov. and Desmoscolex (Desmoscolex) longispiculatus sp. nov., belonging to the subgenus Desmoscolex. Desmoscolex (D.) jejuensis sp. nov. is distinguished by the presence of 18 main rings, with males missing the 8th, 10th, and 14th subventral setae with the 2nd and 15th setae shifted laterally. In females, the 6th, 8th, 10th, and 14th subventral setae are absent. Conversely, D. (D.) longispiculatus sp. nov. exhibits 17 main rings with a typical somatic setae arrangement along with notably elongated spicules and the 14th and 15th subventral setae shifted laterally or slightly subdorsally. Both species are characterized by relatively long and slender cephalic setae. Detailed illustrations and high-magnification micrographs were produced using differential interference contrast (DIC) microscopy and scanning electron microscopy (SEM) to facilitate morphological comparisons between these new species and related taxa. Furthermore, a comparative trait table and a pictorial key are provided to clearly differentiate these new species from morphologically similar taxa. These findings contribute to the understanding of nematode biodiversity and contribute to the broader knowledge of Desmoscolex diversity in Korean coastal ecosystems.
Blossoms is a novel published by Jin Yucheng in 2013 and is currently regarded as a representative work of Shanghai urban literature in China. The novel is told from three different points of view: before and after the Cultural Revolution and in the 1990s. The primary setting is the activities and living spaces of the three protagonists, who are friends. The novel includes descriptions and illustrations of multi-dwelling housing in Shanghai from the 1930s to the 1970s, including old lilong housing, new lilong housing, apartment, Workers’ Village. These types of multi-dwelling housing symbolized the social status of the protagonists, and the protagonists' move to different residences during the Cultural Revolution signified a change in status. This study analyzes Blossoms from an architectural perspective to examine the types of multi-dwelling housing in modern Shanghai. It aims to understand the formation background of each multi-dwelling kind of housing, related urban planning and policies, and architectural characteristics such as floor plans, structures, and materials to better understand the urban residential culture and life of Shanghai residents at that time.
본 연구는 한국 소설이 인도네시아어로 번역될 때 발생하는 문화적 요소와 관련된 번역의 어려움을 규명하고 이를 극복하기 위한 번역 전 략을 고찰하는 데 목적이 있다. 문학 텍스트 번역 과정에서 문화소는 가장 까다로운 요소 중 하나로 여겨지며 이는 특정 어휘 선택뿐만 아 니라 번역자의 문화적 역량 또한 요구한다. 많은 언어학자와 번역학자 들이 문화소의 정의, 분류, 및 번역 전략에 대해 논의하고 있지만 여전 히 명확한 합의에 도달하지 못하고 있다. 이 연구에서는 한국어 소설과 인도네시아어 번역본을 비교 분석하여 다양한 문화소를 유형별로 분류하 고 이를 번역하는 과정에서 사용된 번역 절차와 전략을 분석했다. 번역 절차의 결과를 이국화와 자국화 전략으로 분류하여 비교한 결과 자국 화 전략이 68%로, 이국화 전략 32%에 비해 36% 더 높은 비율을 차지 하였다. 이는 번역 과정에서 원문 문화를 그대로 유지하기보다는 대상 독자의 문화적 맥락에 맞추어 적응시키는 경향이 강하게 나타났음을 의미한다. 한국어 문학 작품의 문화소를 번역하는데 사용된 전략과 절차 를 논의함으로써 번역자들은 자신들의 번역에 적절한 절차를 선택하는데 유용한 정보를 얻을 수 있기를 기대한다.
Polyploidization, or genome doubling, has a significant impact on plant speciation and adaptation, and it is commonly used in agriculture to improve crop traits. In this study, we investigated the induction of polyploidy in three wild Allium species native to Korea: A. senescens and A. spirale Willd. and A. taquetii, using colchicine treatments tailored to meet specific experimental requirements. By avoiding tissue culture methods, we developed a more accessible, cost-effective, and scalable approach to polyploidization. Our research demonstrated that polyploid Allium plants exhibit distinct phenotypic changes, such as reduced growth rates and increased stomatal size. Flow cytometry and chromosome counting confirmed the successful induction of polyploidy, with clear peaks indicating double DNA content and stable chromosome numbers in polyploid plants. The presence of B chromosomes in A. spirale Willd. following polyploidization suggest interesting genetic dynamics. Despite the initial growth lags, polyploid plants may offer enhanced photosynthetic efficiency and resilience under optimal conditions. This study highlights the potential of polyploidization to improve ornamental traits in Allium species, thereby contributing to the diversification and sustainability of ornamental plant offerings. Future research should focus on the long-term performance and ecological adaptability of polyploid Allium species to fully harness their horticultural potential.
국제해사기구는 국제해운의 온실가스 배출을 줄이기 위한 전략을 채택하였으며, 선박 기인 온실가스 배출을 줄이기 위해 보다 강화된 목표를 설정하고 있다. 액체수소를 기화시켜 연료로 사용하는 고분자 전해질 연료전지는 이러한 규제를 준수하기 위한 유망한 기 술 중 하나로 평가받고 있다. 일반적으로 선박시스템 설계는 선급의 규정에 따라야 하지만 환경규제가 강화됨에 따라 새로운 연료와 시 스템의 도입이 가속화되고 있으며, 이로 인해 규정개발이 기술의 도입을 따라가지 못하는 경우도 발생하고 있다. 이러한 격차를 해소하기 위해, 본 연구에서는 수소 연료가스공급 시스템을 대상으로 위험요소 및 운전분석 기법(HAZOP)과 보호계층분석 기법(LOPA)을 결합하여 신기술의 안전성을 검증하는 방법을 제시하였다. 먼저 HAZOP을 통해 위험 시나리오를 식별하고, LOPA를 통해 정성적인 HAZOP 결과를 정량적으로 보완하였다. 초기사건의 빈도와 독립보호계층(IPL)들의 작동 요구시 고장 확률(PFD)을 계산하였다. 기존 IPL의 적절성을 결정 하기 위해, 예상되는 완화 정도를 가정한 허용기준과 비교하였으며, 필요한 경우, 추가 IPL을 권장하였다. 본 연구를 통해서 HAZOP-LOPA 기법이 조선해양 분야에서 신기술의 안전성을 평가할 수 있는 잠재력을 가지고 있음을 확인하였다.
Municipal landfill leachate (MLL) contamination in surface water is a critical global issue due to the high concentration of toxic organics and recalcitrants. The biological treatment of MLL is ineffective due to an elevated concentration of ammoniacal nitrogen, which restricts the production of the recalcitrant degrading laccase enzyme. In this context, integrating an external laccase-anchored carbon catalyst (LACC) matrix system with the microbial system could be an efficient strategy to overcome the drawbacks of conventional biological MLL treatment technologies. In the present study, the LACC matrix was synthesized by utilizing nanoporous activated carbon (NAC) functionalized ethylene diamine (EDA) and glutaraldehyde (GA) (GA/EDA/NAC) matrix for the anchoring of laccase. The maximum anchoring capacity of laccase onto GA/EDA/ NAC was achieved to be 139.65 U/g GA/EDA/NAC at the optimized anchoring time, 60 min; pH, 5; temperature, 30 °C, and mass of GA/EDA/NAC, 300 mg and was confirmed by Fourier transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), and X-ray Diffraction (XRD) analyses. Further, the mechanistic study revealed the involvement of covalent bonding in the anchoring of laccase onto the functionalized surface of the GA/EDA/NAC matrix. The adsorption isotherm and kinetics of laccase anchoring onto the GA/EDA/NAC matrix were performed to evaluate its field-level application. Subsequently, the sequential microbial system (I-stage bacterial treatment followed by II-stage fungal treatment) and III-stage LACC matrix system could effectively reduce the COD by 94.2% and phenol by 92.36%. Furthermore, the Gas Chromatography-Mass Spectrophotometry (GC–MS) and FT-IR analyses confirmed the effective degradation of organic compounds and recalcitrants by the integrated microbial and LACC matrix system. The study suggested that the application of the LACC matrix system has resulted in the complete treatment of real-time MLL by overcoming the negative interference of elevated ammoniacal nitrogen concentration. Thus, the integrated microbial and LACC matrix approach could be considered to effectively treat the MLL without any secondary pollution generation.
In the present study, a novel pH-sensitive hydrogel composite of pectin-grafted-poly (acrylic acid-co-itaconic acid)/MWCNTs- COOH was prepared by using graft copolymerization of acrylic acid and itaconic acid on pectin backbone with incorporation of MWCNTS- COOH. The prepared hydrogel composite has been employed for the adsorption and controlled release of the diclofenac sodium (DS) drug. The hydrogel composite was characterized by the analysis methods: FTIR, XRD, SEM, and TGA to analyze structural characteristics before and after DS drug adsorption. The swelling ratio of the hydrogel composite was investigated at different pH values from pH 1.2 to 10. According to the results, the swelling ratio of the hydrogel composite was found 4195% at pH 7.4. Adsorption process parameters such as pH, contact time, adsorbent dose, and temperature were investigated and found to have a significant influence on DS drug adsorption. The maximum DS drug loading through adsorption of 91% was obtained at pH 3, adsorbent dose of 0.05 g, contact time of 150 min, and temperature of 15 °C. The adsorption isotherm and kinetic results were well-fitted to Freundlich and second-order models. Thermodynamic parameters including changes in Gibb’s free energy, enthalpy, and entropy suggested that the adsorption of DS drug onto hydrogel composite was a spontaneous and exothermic process. The in vitro drug release experiment showed that the cumulative release of DS drug from hydrogel composite after 35 h was significantly higher in simulated intestinal fluid at pH 7.4 than in simulated gastric fluid at pH 1.2.
In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.
In this work, we have designed a novel gas inlet structure for efficient usage of growth and doping precursors. Our previous gas injection configuration is that the gas is mixed to one pipe first, then divided into two pipes, and finally entered the chamber symmetrically above the substrate without a jet nozzle. The distance between gas inlet and substrate is about 14.75 cm. Our new design is to add a new tube in the center of the susceptor, and the distance between the new tube and substrate is about 0.5 cm. In this new design, different gas injection configurations have been planned such that the gas flow in the reactor aids the transport of reaction species toward the sample surface, expecting the utilization efficiency of the precursors being improved in this method. Experiments have shown that a high doping efficiency and fast growth could be achieved concurrently in diamond growth when methane and diborane come from this new inlet, demonstrating a successful implementation of the design to a diamond microwave plasma chemical vapor deposition system. Compared to our previous gas injection configuration, the growth rate increases by 15-fold and the boron concentration increases by ~ 10 times. COMSOL simulation has shown that surface reaction and precursor supply both have a change in determining the growth rate and doping concentration. The current results could be further applied to other dopants for solving the low doping efficiency problems in ultra-wide-band-gap semiconductor materials.
배관 세정 공정은 조선소 선박 건조과정에서 배관 설치 후 장비를 시운전하는 단계로 넘어가기 전에 최종적으로 배관 내부의 이물질을 제거하는 매우 중요한 공정이다. 만약에 배관 내에 이물질이 있는 상태에서 장비를 시운전하는 단계로 넘어갈 경우 이물질이 고가의 장비에 유입되어 펌프 및 기어, 베어링 등이 파손되는 요인이 된다. 특히 펌프나 유압 밸브 같은 경우는 아주 작은 이물질이라도 장비 속으로 유입이 되면 대형 사고로 이어지며, 이런 장비 사고는 주변에 장비 운전을 하는 작업자의 인명사고까지 연계되어 중대 재해 의 잠재 원인이 되므로 조선소 고객인 선주들도 매우 집중적으로 확인하고 관리하는 공정이다. 이러한 문제점을 해결하기 위해 본 연구 에서 기존의 배관 세정 공법에서 유세정 효과를 증가시킬 수 있도록 배관 내 세정 유체의 흐름을 증가할 수 있는 시스템을 제안한다.
Stoneflies (Plecoptera) are known for being sensitive to water pollution and are used as bioindicators for evaluating water quality. Among them, Nemouridae, especially the genus Nemoura, which are commonly referred to as winter stoneflies, can be found around streams even during the cold winter months. Nemoura geei Wu, 1929, among them, was originally described from Beijing and is widely distributed in Korea, China, Japan, and the Russian Far East. Here, we report the development and characterization of new functional microsatellite markers of N. geei using high-throughput sequencing technology. A total of 80,661 microsatellite loci were identified with a total length of 1,801,591 bp. The average length was 22.34 bp, and microsatellites occupied 0.42% of the entire sequence. The novel 20 microsatellite markers developed in this study can be usefully applied to the population genetics analyses as important genetic resources for understanding the ecological and evolutionary characteristics of a stonefly species at the population level in Korea.
Spodoptera frugiperda, commonly known as the fall armyworm (FAW), is a major pest across the globe due to its broad host range and distribution worldwide. We investigated the function of microRNAs (miRNAs) in the detoxification of insecticides, with a specific focus on its susceptibility to chlorantraniliprole which is widely utilized insecticide for its management. miRNAs are small non-coding RNA molecules, crucial for post-transcriptional regulation of gene expression. This study aims to elucidate the impact of these miRNAs on the expression of cytochrome P450 genes, which play a significant role in conferring insecticide resistance. We identified notable changes in the abundance of two specific miRNAs, sfr-miR-10465-5p and sfr-miR- 10476-5p through RNA sequencing, after chlorantraniliprole exposure. These miRNAs exhibited significantly high expression in the fat body tissue, while showing relatively lower expression in the head, midgut, and malpighian tubules. Further analysis suggested that these miRNAs might target specific cytochrome P450 genes, like CYP4C1 and CYP4C21, which are known to play a role in insecticide resistance development. Experimentation with miRNA mimics through microinjection revealed a notable increase in the survival rates of S. frugiperda larvae when subjected to chlorantraniliprole exposure, with a significant reduction in CYP4C1 and CYP4C21 gene expression levels. This suggests a direct connection between the miRNAs and the increased tolerance of Spodoptera larvae to the insecticide. Our research presents the complex function of miRNAs in gene expression regulation related to insecticide resistance, offering valuable insights into the molecular mechanisms of chlorantraniliprole resistance in S. frugiperda. These findings pave the way for further investigations into miRNA roles and their potential in managing pesticide resistance in agricultural pests.
Vespa mandarinia (Vespidae: Hymenoptera) is one of the two largest true hornets known to science. The species is a noted predator of social Hymenoptera and a significant pest of managed honey bees in its native range, but is also known to feed on a wide variety of other species when available. Most of the prey records for V. mandarinia are derived from visual observations in Japan, with sparse observations from other parts of its native range. A population of V. mandarinia was detected in North America in 2019 and five nests were removed between 2019 and 2021. We extracted DNA from larval meconia from four nests collected in Washington State, USA, and amplified the CO1 region to determine the potential prey base. We compared these with sequences generated from three nests in the Republic of Korea, and with prey pellets collected from foraging hornets at several locations in Korea. Results indicate that the prey base was much wider in the ROK than the USA, although social Hymenoptera were the most abundant and common prey items in both regions. Prey range seems to be bound by an intersection of organism size and local biodiversity, with little evidence to suggest that the latter is a limiting factor in colony success.
Over the last decade, there has been growing interest in the plastic degradation capabilities of insect because herbivorous insects may be a valuable resource for microorganisms that can break down synthetic plastics. Insects that can digest plastics using their gut microbiota are gaining interest for use in bioremediation, although their environmental benefits remain unknown. However, most plastics biodegraded by insect gut microbes are polyethylene, polystyrene with little knowledge available on the gut microbiome of insects capable of degrading other synthetic plastics. Therefore, there is an urgent need to secure microbial resources based on insect-microbiome interactions and promote end-of-life solutions for synthetic plastics.
본 논문은 이형기의 소설, 석가모니를 연구 대상으로 그 특징을 분석하고 의미를 찾는 것이 일차적 목적이다. 나아가 불교적 세계관이 다른 장르에까지 확장됨을 확인하고자 한다. 연구 결과, 본고에서는 석가모니 소설이 지닌 특징을 크게 세 가지로 정리하였다. 첫째 석가모니라는 인물의 일대기를 통해, 불교교리의 핵심 중 하나인 사성제를 강조하고 불교사상을 자연스럽게 형상화하였다. 둘째 신이 아닌 인간적인 면모의 석가모니를 구체적으로 형상화하였다. 셋째 불교를 현대적 관점에서 해석하고 불교 용어의 유래를 구체적으로 형상화하였다. 이는 부처님의 말씀이 2600여 년의 것만이 아닌, 현대에도 여전히 유용하다는 점을 강조하는 종교소설이 지닌 특징을 드러낸다고 할 수 있다. 한편 이형기 문학에 있어 불교적 세계관과 사상은 시뿐만 아니라 소설 여타 다른 장르에까지 유기적으로 확장되어, 장르적 다양성이 드러난다는 점도 확인할 수 있었다. 본고는 이형기의 소설, 석가모니를 학술적으로 연구한 최초의 논문이라는 점에서 그 의미가 있다.