본 연구에서는 방사성탄소연대와 부트스트랩 리샘플링을 활용하여 북한강 유역 청동기 시대의 취 락 규모 및 분포의 변화, 그리고 인구 재조직의 가능성을 살펴보았다. 그 결과 3200-2800bp에는 취 락들이 산발적으로 분포해 있다가 2800-2600bp 시기에는 특정 취락들의 규모가 커짐과 동시에 일 부 중소형 취락들의 규모가 감소하는 현상을 파악하였다. 2600-2400bp 시기에는 춘천 중도 유적이 다른 유적의 규모를 압도하는 현상이 관찰된다. 이처럼 소수의 취락들이 거대해짐에 따라 중소형의 취락들의 규모가 축소되거나 소멸하는 현상은 북한강 유역의 대형 취락들의 존재가 단순히 자연적인 인구 증가의 결과물이 아니라 당시 지역 범위 내에서 오랜 시간 누적된 인구의 이합집산의 결과물이 라는 점을 방증한다. 그중에서도 춘천 중도 유적은 2600bp이후 북한강 유역에서 가장 거대한 인구 집결지로서 기능했던 것으로 추정된다. 이에 춘천 중도 유적의 공간 점유 양상뿐만 아니라, 유구 및 유물 역시 시간의 흐름에 따라 변화했을 가능성을 염두에 두고 분석을 시행하였다. 각 구역별 점유 기간을 살펴본 결과 취락 규모의 변화와 인구 유입에 조응하여 공간적인 점유 양상이 달라지는 것을 확인하였다. 춘천 중도 유적의 경우 인구 규모가 증가함에 따라 주거 구역의 밀집도가 높아지는 한 편, 새로운 중심지가 형성되면서 취락이 공간적으로 팽창한 것으로 추정된다. 다만 유물상에서 가구 간 분화가 선명하게 확인되지 않은 점을 고려하면 그간 전제해 온 청동기 시대 사회복합화 양상에 대한 재고가 필요한 것으로 생각된다.
Heteroepitaxy is a better method of enlarging SCD wafer size than homoepitaxy. In this work, several aspects of the bias process for heteroepitaxial diamond nucleation are studied experimentally. First, with increasing bias time, the diamondnucleation pathway is found to transform from “isolated-crystal nucleation” to “typical domain-nucleation” and back to “isolated-crystal nucleation.” An interdependent relationship between bias voltage and bias time is proposed: the higher the bias voltage, the shorter the bias time. Second, a correlation exists between the threshold bias voltage and reactor-chamber pressure: a higher reactor chamber pressure usually requires a higher threshold bias voltage to realize “typical domain nucleation.” Third, diamond bias-enhanced nucleation and growth is observed at a high CH4 content, where the dynamic equilibrium between amorphous-carbon-layer deposition and atomic-hydrogen etching is broken. Finally, epitaxial nucleation is obtained on a substrate with ∅30 mm in a home-made MPCVD setup.
Individual multi-walled carbon nanotubes (MWCNTs) were exposed to the electron beam of 200 kV energy and high resolution transmission electron micrographs were recorded at several time intervals. Interestingly, the nucleation of diamond nanoparticles with in the highly disordered MWCNT matrix upon electron-irradiation is observed. This happens without any assistance of high pressures and temperatures. High pressure X-ray diffraction experiments were performed on core/shell structures which suggest that even the closed structures of carbon resist any inward pressure, thereby ruling out the possibility of a hypothetical internal pressure under the electron irradiation conditions. Our experiments suggest that the transformation of graphitic carbon into diamond in the size window of a few nanometers is possible due to the stability of the diamond and a selective dissolution effect of 200 kV electrons on graphite. A mechanism for the same is proposed.
Molybdenum trioxide (MoO3) is used in various applications including sensors, photocatalysts, and batteries owing to its excellent ionic conductivity and thermal properties. It can also be used as a precursor in the hydrogen reduction process to obtain molybdenum metals. Control of the parameters governing the MoO3 synthesis process is extremely important because the size and shape of MoO3 in the reduction process affect the shape, size, and crystallization of Mo metal. In this study, we fabricated MoO3 nanoparticles using a solution combustion synthesis (SCS) method that utilizes an organic additive, thereby controlling their morphology. The nucleation behavior and particle morphology were confirmed using ultraviolet-visible spectroscopy (UV-vis) and field emission scanning electron microscopy (FE-SEM). The concentration of the precursor (ammonium heptamolybdate tetrahydrate) was adjusted to be 0.1, 0.2, and 0.4 M. Depending on this concentration, different nucleation rates were obtained, thereby resulting in different particle morphologies.
Tungsten (W) thin film was deposited at 400 oC using pulsed chemical vapor deposition (pulsed CVD); film was then evaluated as a nucleation layer for W-plug deposition at the contact, with an ultrahigh aspect ratio of about 14~15 (top opening diameter: 240~250 nm, bottom diameter: 98~100 nm) for dynamic random access memory. The deposition stage of pulsed CVD has four steps resulting in one deposition cycle: (1) Reaction of WF6 with SiH4. (2) Inert gas purge. (3) SiH4 exposure without WF6 supply. (4) Inert gas purge while conventional CVD consists of the continuous reaction of WF6 and SiH4. The pulsed CVD-W film showed better conformality at contacts compared to that of conventional CVD-W nucleation layer. It was found that resistivities of films deposited by pulsed CVD were closely related with the phases formed and with the microstructure, as characterized by the grain size. A lower contact resistance was obtained by using pulsed CVD-W film as a nucleation layer compared to that of the conventional CVD-W nucleation layer, even though the former has a higher resistivity (~100 μΩ-cm) than that of the latter (~25 μΩ-cm). The plan-view scanning electron microscopy images after focused ion beam milling showed that the lower contact resistance of the pulsed CVD-W based W-plug fill scheme was mainly due to its better plug filling capability.
We report the effect of the fabric of the surface microstructure on the CO gas sensing properties of SnO2 thin films deposited on self-assembled Au nanodots (SnO2/Au) that were formed on SiO2/Si substrates. We characterized structural and morphological properties, comparing them to those of SnO2 thin films deposited directly onto SiO2/Si substrates. We observed a significant enhancement of CO gas sensing properties in the SnO2/Au gas sensors, specifically exhibiting a high maximum response at 200˚C and quite a low detection limit of 1 ppm level in dry air. In particular, the response of the SnO2/Au gas sensor was found to reach the maximum value of 32.5 at 200˚C, which is roughly 27 times higher than the response (~1.2) of the SnO2 gas sensor obtained at the same operating temperature of 200˚C. Furthermore, the SnO2/Au gas sensors displayed very fast response and recovery behaviors. The observed enhancement in the CO gas sensing properties of the SnO2/Au sensors is mainly ascribed to the formation of a nanostructured morphology in the active SnO2 layer having a high specific surface-reaction area by the insertion of a nanodot form of Au nucleation layer.
Polysulfone (PSf/NMP/alcohol 용액과 chlorinated poly(vinyl chloride) (CPVC)/THF/Alcohol 용액에 대한 광산란 패턴을 SALS (Small angle light scattering)와 FE-SEM (field emission scanning electron microscope)을 이용하여 조사하였다. PSf 용액에서는 시간에 따라 q값의 최대 산란 강도를 보이는 광산란 거동을 나타내어 스피노달 (SD) 상분리 거동을 나타내는 반면, CPVC 용액에서는 q값이 증가함에 따라 광산란 강도가 줄어드는 핵성장 (NG) 거동을 나타냈다. 각 고분자 용액에서 상분리 중반과 후반부에서 비용매 첨가제로 사용된 알코올의 탄소수가 증가할수록 농도분극의 증가율은 줄어들었다. 또한, SD에서의 초반부의 시간에 따른 산란 강도는 비용매 첨가제의 종류에 무관하게 Cahn의 건형 이론에 잘 부합되었다. 또한, SALS 장치로 얻어진 기공크기와 전자현미경으로 얻어진 영역 크기는 상호간에 비교되었다. 20PSf/70NMP/10n-butano1 (w/w%) 용액에 대한 산란 패턴은 초기 상분리 거동에서부터 후기 거동까지 매우 선명하게 관측되었고, 초반, 중반, 그리고 후반부에 대한 SD에 대한 이론적 결과와 잘 일치하였다. 최고의 산란강도를 나타낸 각도의 크기는 n-butanol>n-propanol>methanol>no alcohol 순으로 관찰되었으며, 이 순서로 최종 형성된 막 단면의 기공 크기가 감소되는 것으로 조사되었다.
본 연구에서는 고변형된 이중 에피층에서 두 가지 종류의 반원 전위 루프 (60˚및 쌍격자 전위)의 생성 속도물 예측하는 모델을 제안한다. 모델링 시, 에피층 표면에서 발생하는 결함과 이곳에 집중되는 응력 효과를 고려하였으며, Matthew의 식을 발전시켜 에피층 두께에 따른 잔류 변형율을 변수로 사용하였다. 모델링을 통한 계산 결과에 의하면, 응력 집중 현상은 고변형된 이종에피층에서 전위 및 결정 결함 현상을 설명하는 데 매우 중요하였다. 또한,본 연구를 퉁하여, 응력 집중 현상이 에피층 성장 초기에 생성되는 전위 형태를 결정하는 주요한 인자 중 하나임을 단면 투과 전자 현미경 결과와의 비교를 통해 확인할 수 있었다.
(hfac) Cu(1,5-COD)(1,1,1,5,5,5-hexafluro-2,4-pentadionato Cu(I) 1,5-cyclooctadine) 증착원을 이용하여 MOCVD(metal organic chemical vapor deposition)로 Cu 박막을 형성시키고, MOCVD에 의한 TiN 기판 변화가 Cu 증착에 미치는 영향을 조사하였다. 공기 중에 노출시킨 기판은 MOCVD 에 의한 Cu 핵생성 및 초기성장에 영향을 미쳐 입자크기가 작고, 입자간의 연결성이 떨어졌으며, in-situ MOCVD Cu의 경우는 입자크기가 크고, 입자간의 연결성이 우수하여 1900Å 이상의 두께에서는 2.0μΩ-cm 정도의 낮은 비저항을 유지하였다. 또한 접착력에서는 in-situ MOCVD TiN 의 경우가 보다 우수하였다. 이와 같은 결과를 토대로 MOCVD Cu 성장단계를 제시하였다.
ECR 마이크로 플라즈마 CVD법에 의하여 단결정 Si기판위에서 대면적에 걸쳐 방향성을 가진 다이아몬드박막을 성공적으로 성장시키고, 막 증착공정을 바이어스처리 단계와 성막단계의 2단계로 나누어 실시할 때 바이어스처리 단계에서 여러 공정 매개변수들이 다리아몬드 핵생성밀도에 미치는 효과에 관하여 조사하였다. 기판온도600˚C, 압력 10Pa, 마이크로파 전력 3kW, 기판바이어스 +30V의 조건으로 바아어스 처리할 때, 핵생성에 대한 잠복기간은 5-6분이며, 핵생성이 완료되기 까지의 시간은 약 10분이다. 10분 이후에는 다이아몬드 결정이 아닌 비정질 탄소막이 일단 형성된다. 그러나 성장단계에서 이러한 비정질 탄소막은 에칭되어 제거되고 남아있는 다이다몬드 핵들이 다시 성장하게 된다. 또한 기판온도의 증가는 다이아몬드 막의 결정성을 높이고 핵생성 밀도를 증가시키는 데에 별로 효과가 없다. ECR플라즈마 CVD법에서 바이어스처리 테크닉을 사용하면, 더욱 효과적임을 확인하였다. 총유량 100 sccm의 CH3OH(15%)/He(85%)계를 사용하여 가스압력 10Pa, 바이어스전압 +30V마이크로파 전력 3kW, 온도 600˚C의 조건하에서 40분간 바이어스처리한 다음 다이아몬드막을 성장시켰을 때 일시적으로나마 제한된 지역에서 완벽한 다이아몬드의 에피성장이 이루어졌음을 SEM으로 확인하였다. 이것은 Si기판상에서의 다이아몬드의 에피성장이 가능함을 시사하는 것이다. 그밖에 라만분광분석과 catodoluminescence 분석에 의한 다이아몬드의 결정질 조사결과와 산소방전 및 수소방전에 의한 챔버벽의 탄소오염효과 등에 관하여 토의하였다.
다이아몬드 박막을 이용한 반도체소자를 실현시키기 위해서는 다이아몬드가 아닌 다른 재료의 기판위에 대면적에 걸쳐 다이아몬드막을 에피텍셜 성장시키는 것이 필수적이다. 그러나 이 분야의 연구는 아직 초보상태로 그 목표가 실현되지 못하고 있다. 본 논문에서는 저압의 ECR 마이크로파 플라즈마 CVD에 의하여 대면적의 Si(100)기판상에 방향성을 갖는 다이아몬드막을 성공적으로 성장시킨 결과를 보고자한다. 지금까지 얻어진 최적 핵생성 공정조건은 다음과 같다 : 반응압력 10Pa, 기판온도 800˚C(마이크로파 전력이 3kW일 때), 원료가스 CH4/He 계로 농도비 3%/97%, 가스총유량 100sccm, 바이어스 전압 + 30V, 마이크로파 전력(microwave power)4kW, 바이어스 처리 시간 10분간이며, 성장단계에서의 증착공정 조건은 기판온도 800˚C, 원료가스 CH4/CO2/H2계로 농도비 5%/15%/85%, 가스 총유량 1000sccm, 바이어스 전압 +30V, 마이크로파 전력 5kW, 성막시간 2시간으로 일정하게 유지하였다. 이 조건하에서 기판 면적 3x4cm2의 대면적에 대해서 약 2x109cm-2의핵생성 밀도를 균일하게 재현성있게 얻었다. 원료가스로 CH4/H2를 사용한 경우보다 CH4/H2를 사용할 경우에 라디칼밀도의 증가에 의하여 더 높은 핵생성밀도를 얻을 수 있었다. 또한 저압의 ECR플라즈마 CVD의 경우에는 양의 바이어스전압이 막의 손상이 없어 다이아몬드 핵생성에 더 적합하였다.
반응성 스팟터법에 의하여 형성된 TiN막 표면상에 CVD 텅스텐막을 증착할 때 여러가지 전처리 실시에 따른 텅스덴의 핵 생성 양상의 변화를 비교 조사하였다. 먼저 Ar rf 스팟터에칭 전처리는 에칭 두께가 200A 이상일 때에는 잠복기와 증착속도를 증가시킨다. Ar 이온주입 전처리는 잠복기를 증가시켜 텅스텐의 핵 생성에는 불리한 효과를 나타내는 반면, 증착속도는 증가시킨다. 또한 SiH4flushing 전처리는 TiN막 표면에서의 Si의 흡착을 용이하게 함으로써 잠복기를 약간 감소시키는 효과를 나타낸다.
형성방법이 다른 세종류의 TiN기판상에 CVD텅스텐막을 도포할 때의 W의 핵생성 양상을 비교조사하여 다음과 같은 결과를 얻었다. 반응성 스팟터법에 의하여 형성한 TiN과 NH3분위기에서 RTP처리한 SiH4환원에 의하여 CVD-W막을 증착할 때, 증착속도(deposition rate)는 sputtered TiN>RTP TiN>annealed TiN의 순서로 감소하며, W 핵생성에 대한 잠복기는 sputtered TiN≤RTP TiN<annealed TiN의 순서로 증가하는 경향을 나타낸다. Annealed TiN의 경우에는 열처리공정중 질소분위기내에 불순물로 존재하던 산소가 TiN막내로 들어가 TiN막의 조성이 TiOxNY로 바뀌기 때운에 그 위에서 W의 핵성성이 어려워지고, 증착속도도 낮아진 것이다. RTP-TiN의 미세한 결정립구조는 W의 핵성성과 성장에 유리한 효과를 미치지만, 그것의 높은 압축응력이 W의 핵생성과 성장에 미치는 불리한 효과가 더 크기 때문에, RTP-TiN 기판상에 W를 증착할 경우가 sputtered TiN 기판상에 W를 증착할 경우보다 증착속도가 더 낮고, 잠복기도 더 긴 것으로 사료된다.
WF6와 SiH4의 화학반옹으로부터 산화규소막 위에 텅스텐 핵이 형성되는 현상을 실험을 통해 관찰하였다. 핵이 생성되는 속도는 반응온도가 높고 운반기체의 유량이 적으며 반응기내의 압력이 높을수록 큰 것으로 나타났다. 또한 반응기체가 흘러가는 방향에서 아랫쪽으로 위치하는 표면에 핵이 생성되는 속도가 큰 것으로 나타났다. 산화막위에 생성된 텅스텐 핵의 형상과 파단면을 주사현미경으로 관찰하였으며 산화막위에 형성된 텅스텐 박막의 화학적 조성을 밝혀내었다.