검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 160

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to determine the future direction of Busan City’s tree planting policy in accordance with changes in automobile fuel and air pollutants, this study selected representative tree species planted in Busan and identified the biogenic volatile organic compounds (BVOCs) emission rate and characteristics of each species. First, representative tree species were selected for each street tree species, forest tree species, and park tree species, and the emission rate and major components of BVOCs were investigated for each tree species. Furthermore, by comparing the ozone generation potential (POCP) for each tree species, tree species with a low emission rate were selected. According to the POCP comparison, P. yedoensis, G. biloba, Z. serrata and C. retusus were selected as roadside tree species, P. densiflora and C. obtusa as forest species, and A. palmatum, C. japonica, and Q. myrsinaefolia were deemed suitable for park species. However, in the case of P. occidentalis, Quercus, and M. glyptostroboides, the emission rates of BVOCs were found to be high. Despite this, these tree species were found to display excellent CO2 absorption and carbon storage. The concentration of NOx in the city center is likely to decrease due to the current trend of transitioning to eco-friendly cars worldwide, resulting in less cars that rely on fossil fuels. Therefore, in the current climate where NOx emissions are still high, planting tree species with a low BVOCs emission rate would be an optimal approach. On the other hand, if the NOx concentration in the city is found to be very low due to changes in automobile fuel use, planting tree species with excellent BVOCs emission capacity and CO2 absorption would be ideal.
        5,200원
        2.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yeosu National Industrial Complex is one of Korea’s representative petrochemical industrial complexes where crude oil refining and petrochemical companies are concentrated. According to the results of the 2021 chemical emissions survey, during the process of manufacturing, storage, and transportation at the Yeosu National Industrial Complex, various hazardous chemicals, including hazardous air pollutants, volatile organic compounds and odorous substances are being emitted into the air, affecting the surrounding environment and the health of residents. The Ministry of Environment is applying strengthened standards by designating the Yeosu National Industrial Complex as an air conservation special measure area and establishing odor management areas to manage the air environment. Nevertheless, odor complaints continue to be registered and related complaints increase when turnaround work is carried out. Since air emissions are not counted during periods of turnaround as normal operations are temporarily suspended, it was difficult to establish policies to reduce odor complaints because the source of emissions and emission quantities cannot be ascertained with certainty. In this study, the extensive Yeosu National Industrial Complex was subdivided into 4 areas using a mobile vehicle equipped with PTR-ToF-MS capable of real-time analysis without sample pretreatment being carried out. Measurements were repeated during the day, night, and dawn while moving around the internal boundary of the plant and the boundary of each region where turnaround activities were being carried out. As a result, the recorded measurement for acrylonitrile was the highest at 6340.0 ppb and propyne and propene were measured the most frequently at 128 times each. Based on these results, it will be possible to help reduce emissions through process improvement by efficiently operating air measurement networks and odor surveys that conduct regular measurements throughout the year and providing actual measurement data to the plant. Also, it will help reduce odor complaints and establish systematic air management policies.
        4,500원
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to evaluate the pollutants removal characteristics of two types of RBFs(Riverbank filtration, Riverbed filtration) intake facilities installed in Nakdong River and in Hwang River respectively. The capacity of each RBF is 45,000 ㎥/d for riverbank filtration intake facility and 3,500 ㎥/d for riverbed filtration intake facility. According to data collected in the riverbank filtration site, removal rate of each pollutant was about BOD(Biochemical oxygen demand) 52%, TOC(Total organic carbon) 57%, SS(Suspended solids) 44%, Total coliforms 99% correspondingly. Furthermore, Microcystins(-LR,-YR,-RR) were not found in riverbank filtered water compared to surface water in Nakdong River. DOC(Dissolved organic carbon) and Humics which are precursors of disinfection byproduct were also reported to be removed about 59% for DOC, 65% for Humics. Based on data analysis in riverbed filtration site in Hwang River, removal rate of each contaminant reaches to BOD 33.3%, TOC 38.5%, SS 38.9%, DOC 22.2%, UV254 21.2%, Total coliforms 73.8% respectively. Additionally, microplastics were also inspected that there was no obvious removal rate in riverbed filtered water compared to surface water in Hwang River.
        4,000원
        7.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The disposal of organic pollutants is one of the important research topics. Some of the studies in this field are based on the degradation of organic pollutants with a catalytic agent. The cobalt tetraoxide/peroxymonosulfate system is an important catalytic system used for the radical degradation of organic pollutants. To increase the catalytic efficiency of such reactions, graphitization of activated carbon used as a support solid and nitrogen doping to the carbon structure are commonly used methods. In this study, cobalt tetraoxide production, N-doping and graphitization were carried out in a single step by heat treatment of activated carbon doped with the phthlocyanine cobalt (II) complex. The catalytic performance of the catalyst/ peroxymonosulfate system was investigated by changing the pH, catalyst, and PMS concentration parameters on rhodamine B and 1,3,5 trichlorophenol, which were used as models. It was seen that the catalysts had 97% activity on rhodamine B in 16 min and 100% on 1,3,5 trichlorophenol in 6 min. It was observed that the catalysts continued to show high catalytic activity for five cycles in reusability studies and had a very low cobalt leaching rate. These results are in good agreement with previously published studies. In line with these results, the synthesized N-doped graphitic carbon/Co3O4 catalyst can be used as an effective catalyst for wastewater treatments.
        4,900원
        8.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland’s capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.
        4,500원
        9.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a bipolar visible light responsive photocatalytic fuel cell (PFC) was constructed by loading a Z-scheme g-C3N4/ carbon black/BiOBr and a Ti3C2/ MoS2 Schottky heterojunction on the carbon brush to prepare the photoanode and photocathode, respectively. It greatly improved the electron transfer and achieved efficient degradation of organic pollutants such as antibiotics and dyes simultaneously in two chambers of the PFC system. The Z-scheme g-C3N4/carbon black/BiOBr formed by adding highly conductive carbon black to g-C3N4/BiOBr not only effectively separates the photogenerated carriers, but also simultaneously retains the high reduction of the conduction band of g-C3N4 and the high oxidation of the valence band of BiOBr, improving the photocatalytic performance. The exceptional performance of Ti3C2/ MoS2 Schottky heterojunction originated from the superior electrical conductivity of Ti3C2 MXene, which facilitated the separation of photogenerated electron–hole pairs. Meanwhile, the synergistic effect of the two photoelectrodes further improved the photocatalytic performance of the PFC system, with degradation rates of 90.9% and 99.9% for 50 mg L− 1 tetracycline hydrochloride (TCH) and 50 mg L− 1 rhodamine-B (RhB), respectively, within 180 min. In addition, it was found that the PFC also exhibited excellent pollutant degradation rates under dark conditions (79.7%, TCH and 97.9%, RhB). This novel pollutant degradation system is expected to provide a new idea for efficient degradation of multiple pollutant simultaneously even in the dark.
        4,900원
        10.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.
        4,000원
        11.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 대기오염물질 배출량 통계에 따르면 상당한 대기오염물질이 선박에 의해 발생하고 있다. 따라서 선박으로부터의 대기오 염물질 배출 제한과 항만지역 대기질 개선을 위해 다양한 정책들이 시행되고 있고, 국제적으로도 선박에 의한 해양오염 방지를 위해 국 제 협약 등이 이루어지고 있다. 하지만 실제 운항하는 선박에서 배출되는 대기오염물질 측정에 관한 연구와 실험은 거의 이루어지고 있 지 않아, 본 연구는 이동식배출가스측정장비(PEMS)를 사용하여 실제 운항하는 9,169톤급 선박에서 발생하는 대기오염물질 배출량 평가에 대한 방법과 가능성을 제시하였다. RPM과 부하에 따라 배출량의 차이가 있었으며, NOX 배출량은 497-2,060ppm, CO2는 1.55-6.9%, CO는 0.002-0.14% 수준이다. 엔진 제조사에서 제공하는 Shop Test에 명시된 배출량과 실제 측정된 배출량에 차이가 있음을 확인하였다. 대상선박 의 전 항해구간에서 발생하는 각 대기오염물질 최대 배출량이 PEMS 측정 구간에 포함되는 것을 확인하여, 총톤수 10,000톤급 이내 선박 에 PEMS 활용 가능성을 검증하였다.
        4,000원
        13.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hybridization of graphene with magnetic nanoparticles has endowed graphene with increasing interest as the adsorbent for wastewater treatment. However, its fabrication often involves a multi-stepped chemical synthesis process. In this work, we demonstrate a facile, one-step, and solvent-free approach to fabricate Fe3O4 nanoparticle-anchored Laser-Induced Graphene ( Fe3O4@LIG) as an efficient adsorbent by direct laser irradiation on a ferric acetylacetonate containing polybenzoxazine film. Raman and X-ray diffraction analysis confirm the graphene component in the adsorbent, and the morphology characterizations show that Fe3O4 nanoparticles are distributed uniformly on LIG with hierarchical meso- and macro-porous structures. Adsorption experiments indicate that Fe3O4@ LIG can adsorb methylene blue (MB) from aqueous solutions in a fast and effective manner, with a maximum adsorption capacity up to 350.9 mg/g. The adsorption kinetics and isotherms are also investigated, which are well-described by the pseudo-second-order model and Langmuir model, respectively. Additionally, Fe3O4@ LIG is also demonstrated with the efficient removal of a variety of organic solvents from water. The favorable adsorption behavior of Fe3O4@ LIG is attributed to its unique porous structure and the molecular interactions with adsorbates. On the other hand, Fe3O4@ LIG has high magnetic property, and therefore, it could be easily recovered from water and well regenerated for repeated use. With the efficient adsorption of organic pollutants, magnetic separability, and good
        5,200원
        15.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 국내 서로 다른 지리적 특성을 갖는 지역에서 발생되는 해륙풍에 의한 항만 내 선박 대기오염물질의 항구도시 확산 범위를 규명하고자 하였다. 연구 대상 지역은 서해안(인천항 및 평택·당진항), 다도해 지역(목포항), 남해 및 동해(부산항 및 마산항), 동해 산간 지역(동해·묵호항)으로 선정하였다. 해륙풍 발생과 그로 인한 항만 내 선박에서 기인하는 대기오염물질의 확산 모사를 위하여 비선형(Non-linear) 및 비정상(Unsteady) 거동의 국지 순환풍 모사가 가능한 HOTMAC-RAPTAD 프로그램을 활용하였으며, 모사 기간은 전형적인 여름 날씨인 7월 중순으로 하였다. 그 결과, 해륙풍의 발생 특성과 항만에서 발생되는 대기오염물질의 주변 지역 확산 거동이 지역 마다 서로 다르게 나타났는데 연구 대상 항만인 인천항, 목포항, 부산항, 동해·묵호항에서 배출되는 대기오염물질은 항구로부터 각각 27~31km(서울 서쪽 일부 지역), 21~24km(무안 남부), 20~26km(김해 및 양산 인근), 22~25km(태백산맥 능선 지역)까지 영향을 끼치는 것으로 분석되었다. 따라서 본 연구에서 도출된 결과는 향후 효과적인 항만 지역 대기질과 선박 대기오염물질 관리에 있어 매우 중요한 기초 수단으로 활용 가능할 것으로 기대된다.
        4,000원
        17.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The correlation among gaseous air pollutants (odorous compounds, greenhouse gases) and meteorological parameters was analyzed in-depth using measurement data at a barn and ambient in a naturally ventilated dairy farm. Both concentration and emission data (loading rate and emission rate), which more accurately express the actual pollutant emissions, were used in the correlation analysis. Gaseous air pollutants (ammonia, hydrogen sulfide, carbon dioxide, nitrous oxide, methane) and meteorological factors (relative humidity, temperature, wind speed, solar strength) were measured for one week in July 2013. The upper and lower outliers of measured data by inducing 1.5 times the interquartile range (IQR) were eliminated. After eliminating the outliers and grouping according to data magnitude, the correlation analysis among gaseous compounds and meteorological factors was conducted using the average values of each group. In the correlation analysis, data for the emission rate (barn) and the loading rate (ambient) showed a better correlation than concentration data. Gaseous air pollutants except for hydrogen sulfide in the barn showed a good correlation. Hydrogen sulfide might not be produced from manure or animal origin. Rather, the compound may be produced by flushing water, which was flushed at periodical times (every six hours). Ammonia emissions increased with increasing temperature, and this increase can be affected from greater exertion of feces by frequent water drinking in a high-temperature condition. In the ambient, the correlation for all gaseous air pollutants was better than that in the barn, because those air pollutants from manure, animals, and flushing water origins were sufficiently mixed in the atmosphere. Wind speed also showed a good correlation with all gaseous air pollutants.
        4,000원
        19.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        축산 폐수는 고농도의 영양염류와 중금속을 함유하고 있어, 배출될 때 수질을 악화시킨다. 기존 처리 기술과 비교하여 bioremediation은 축산 폐수 처리에 유능하다. 특히, 미세조류는 오염물질 제거에 잠재력을 가지고 있다. 본 연구에서는 Ankistrodesmus bibraianus를 이용하여 축산 폐수 내 영양염류 (질소 (N), 인 (P))와 중금속 (구리 (Cu), 아연 (Zn))의 제거 가능성을 평가하고, A. bibraianus의 최적배양조건을 확립하였다. 연구결과, 최적 배양조건은 28°C, pH 7, 광주기는 14 : 10 h로 설정되었다. N과 P의 단일 처리구 (500, 1,000, 5,000, 10,000 mg L-1)에서 제거효율은 각각 22.9~80.6%와 11.9~50.0%였다. 또한, N과 P의 복합 처리구에서 제거효율은 각각 16.4~58.3%와 7.80~49.8%였다. Cu와 Zn의 단일 처리구 (10, 30, 50 mg L-1)에서 제거효율은 각각 15.5~81.5%와 6.28~34.3%였다. 유사하게, Cu와 Zn의 복합 처리구에서 제거효율은 각각 16.7~74.5%와 5.58~27.5%였다. 또한 영양염류 (N 및 P)와 중금속 (Cu 및 Zn)의 성장 및 제거효율을 축산 폐수에 적용할 수 있음을 나타냈다. 본 연구의 결과에 따르면 A. bibraianus는 축산 폐수 내 영양염류와 중금속 제거에 이용할 수 있을 것으로 사료된다.
        4,200원
        20.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 화력발전소 배출로 인한 지표면 오염물질 농도의 시·공간적 영향을 실측 자료를 바탕으로 정량적으로 분석하려는 목적으로 수행되었다. 배출과 농도 관계의 정량적 분석을 위해 우선 기상 조건과 주변 배출원의 영향을 고려하였다. 이를 위해 자료의 선택과 관측지점 선정 과정을 제안하였고, 선정된 지표면 시·공간 자료에 K-Z 필터와 경험직교함수(EOF) 분석 기법을 적용하였다. 사용된 자료는 2014-2017년 4년의 기간 동안 당진과 태안 화력발전소 굴뚝 자동측정기기의 농도값을 이용하여 산출한 한 시간 평균 배출량 자료와 지표면 대기오염농도 측정망 자료이다. 기상 자료로는 최근 배포 중인 ERA5 재분석자료와 기상청 종관기상관측소 한 시간 평균 자료가 사용되었다. 발전소만의 영향이 최대한 보이도록 기상 효과와 지리적인 요인을 고려하여 선택한 시간대의 선정된 관측소 자료만을 이용하여 분석한 결과, 지표면 대기오염물질의 EOF 첫 번째 모드는 SO2, NO2, PM10 모두에 대해 97% 이상의 변동성을 설명하였다. 또한 지표면 농도장의 EOF 첫 번째 모드의 시계열은 화력발전소 배출과 유의미한 상관성을 보였다. 결과적으로 당진 화력발전소 SO2, NO2, TSP 시간 당 배출량이 각각 10%가 감소하면, 남서풍 계열의 바람에 의해 직접 영향을 받는 서울 수도권 지표면 평균 SO2 농도는 0.468 ppb (R=0.384), NO2는 1.050 ppb (R=0.572), PM10은 2.045 μg m−3 (R=0.343) 정도가 감소한다고 판단할 수 있다. 태안화력발전소의 경우, SO2, NO2, TSP 배출량을 각각 시간당 10% 씩 감축하면, SO2는 0.284 ppb (R=0.648), NO2는 0.842 ppb (R=0.683), PM10은 1.230 μg m−3 (R=0.575) 정도가 감소될 수 있음을 확인하였다. 태안화력발전소는 당진화력발전소에 비해 수도권지역 농도에 미치는 영향은 작았으나, 상관관계는 더 높았다.
        4,300원
        1 2 3 4 5