검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        4.
        2023.11 구독 인증기관·개인회원 무료
        Properties of bentonite, mainly used as buffer and/or backfill materials, will evolve with time due to thermo-hydro-mechanical-chemical (THMC) processes, which could deteriorate the long-term integrity of the engineered barrier system. In particular, degradation of the backfill in the evolution processes makes it impossible to sufficiently perform the safety functions assigned to prevent groundwater infiltration and retard radionuclide transport. To phenomenologically understand the performance degradation to be caused by evolution, it is essential to conduct the demonstration test for backfill material under the deep geological disposal environment. Accordingly, in this paper, we suggest types of tests and items to be measured for identifying the performance evolution of backfill for the Deep Geological Repository (DGR) in Korea, based on the review results on the performance assessment methodology conducted for the operating license application in Finland. Some of insights derived from reviewing the Finnish case are as follows: 1) The THMC evolution characteristics of backfill material are mainly originated from hydro-mechanical and/or hydrochemical processes driven by the groundwater behavior. 2) These evolutions could occur immediately upon installation of backfill materials and vary depending on characteristics of backfill and groundwater. 3) Through the demonstration experiments with various scales, the hydro-mechanical evolution (e.g. advection and mechanical erosion) of the backfill due to changes in hydraulic behavior could be identified. 4) The hydro-chemical evolution (e.g. alteration and microbial activity) could be identified by analyzing the fully-saturated backfill after completing the experiment. Given the findings, it is judged that the following studies should be first conducted for the candidate backfill materials of the domestic DGR. a) Lab-scale experiment: Measurement for dry density and swelling pressure due to saturation of various backfill materials, time required to reach full saturation, and change in hydraulic conductivity with injection pressure. b) Pilot-scale experiment: Measurement for the mass loss due to erosion; Investigation on the fracture (piping channel) forming and resealing in the saturation process; Identification of the hydro-mechanical evolution with the test scale. c) Post-experiment dismantling analysis for saturated backfill: Measurement of dry density, and contents of organic and harmful substances; Investigation of water content distribution and homogenization of density differences; Identification of the hydro-chemical evolution with groundwater conditions. The results of this study could be directly used to establishing the experimental plan for verifying performance of backfill materials of DGR in Korea, provided that the domestic data such as facility design and site characteristics (including information on groundwater) are acquired.
        5.
        2023.11 구독 인증기관·개인회원 무료
        The effect of various physicochemical processes, such as seawater intrusion, on the performance of the engineered barrier should be closely analyzed to precisely assess the safety of high-level radioactive waste repository. In order to evaluate the impact of such processes on the performance of the engineered barrier, a thermal-hydrological-chemical model was developed by using COMSOL Multiphysics and PHREEQC. The coupling of two software was achieved through the application of a sequential non-iterative approach. Model verification was executed through a comparative analysis between the outcomes derived from the developed model and those obtained in prior investigations. Two data were in a good agreement, demonstrating the model is capable of simulating aqueous speciation, adsorption, precipitation, and dissolution. Using the developed model, the geochemical evolution of bentonite buffer under a general condition was simulated as a base case. The model domain consists of 0.5 m of bentonite and 49.5 m of granite. The uraninite (UO2) was assigned at the canister-bentonite interface as the potential source of uranium. Assuming the lifetime of canister as 1,000 years, the porewater mixing without uranium leakage was simulated for 1,000 years. After then, the uranium leakage through the dissolution of uraninite was initiated and simulated for additional 1,000 years. In the base case model, where the porewater mixing between the bentonite and granite was the only considered process, the gypsum tended to dissolve throughout the bentonite, while it precipitated in the vicinity of bentonite-granite boundary. However, the precipitation and dissolution of gypsum only showed a limited effect on the performance of the bentonite. Due to the low solubility of uraninite in the reduced environment, only infinitesimal amounts of uranium dissolved and transported through the bentonite. Additional cases considering various environmental processes, such as seawater or cement porewater intrusion, will be further investigated.
        6.
        2023.11 구독 인증기관·개인회원 무료
        Understanding the long-term geochemical evolution of engineered barrier system is crucial for conducting safety assessment in high-level radioactive waste disposal repository. One critical scenario to consider is the intrusion of seawater into the engineered barrier system, which may occur due to global sea level rise. Seawater is characterized by its high ionic strength and abundant dissolved cations, including Na, K, and Mg. When seawater infiltrates an engineered barrier, such dissolved cations displace interlayer cations within the montmorillonite and affect to precipitation/ dissolution of accessory minerals in bentonite buffer. These geochemical reactions change the porewater chemistry of bentonite buffer and influence the reactive transport of radionuclides when it leaked from the canister. In this study, the adaptive process-based total system performance assessment framework (APro), developed by the Korea Atomic Energy Research Institute, was utilized to simulate the geochemical evolution of engineered barrier system resulting from seawater intrusion. Here, the APro simulated the geochemical evolution in bentonite porewater and mineral composition by considering various geochemical reactions such as mineral precipitation/dissolution, temperature, redox processes, cation exchange, and surface complexation mechanisms. The simulation results showed that the seawater intrusion led to the dissolution of gypsum and partial precipitation of calcite, dolomite, and siderite within the engineered barrier system. Additionally, the composition of interlayer cation in montmorillonite was changed, with an increase in Na, K, and Mg and a decrease in Ca, because the concentrations of Na, K, and Mg in seawater were 2-10 times higher than those in the initial bentonite porewater. Further studies will evaluate the geochemical sorption and transport of leaked uranium-238 and iodine-129 by applying TDB-based sorption model.
        7.
        2023.11 구독 인증기관·개인회원 무료
        With the importance of permanent disposal of high-level radioactive waste (HLW) generated in Korea, the deep geological disposal system based on the KBS-3 type is being developed. Since the deep geological repository must provide the long-term isolation of HLW from the surface environment and normal habitats for humans, plants, and animals, it is essential to assess the longterm performance of the disposal facility considering thermal-hydraulic-mechanical-chemical (TH- M-C) evolution. Decay heat dissipated from HLW contained in the canister causes an increase in temperature in the adjacent area. The requirement for the maximum temperature is established in consideration of the possibility of bentonite degradation. Therefore, when designing the repository, the temperature in the region of interest should be identified in detail through the thermal evolution assessment to ensure that the design requirement is satisfied. In the thermal evolution analysis, it is needed to evaluate the temperature distribution over the entire area of the disposal panel to consider the heat generated from both a single canister and adjacent canisters. Computational fluid dynamics (CFD) codes are widely used for detailed temperature analysis but are limited to simulating a wide range. Accordingly, in this study, we developed an analytical solution-based program for efficiently calculating the temperature distribution throughout the deposition panel, which is based on threedimensional heat conduction equations. The code developed can assess the temperature distribution of engineered and natural barrier systems. Principal parameters to be inputted are as follows: (a) geometry of the panel (e.g. width, length, height, spacing between canisters), (b) geometry of the canister (e.g. diameter, height), (c) thermal properties of bentonite and host-rock, (d) initial conditions (e.g. residual heat, temperature), and (e) time information (e.g. canister emplacement rate, time-interval, period). Through the calculation for the conceptual problem of a deposition panel capable of accommodating 900 (i.e. 30×30) canisters, it was confirmed that the program can adequately predict when and where the maximum temperature will occur. It is expected that the overall temperature distribution within the panel can be obtained by the evaluation of the entire region using this program reflecting the detailed design of the repository to be developed in the future. In addition, the thermal evolution analysis considering the influence of other canisters can be performed by applying the results as boundary conditions in the CFD analysis.
        8.
        2023.11 구독 인증기관·개인회원 무료
        In 2012, POSIVA selected a bentonite-based (montmorillonite) block/pellet as the backfilling solution for the deposition tunnel in the application for a construction license for the deep geological repository of high-level radioactive waste in Finland. However, in the license application (i.e. SC-OLA) for the operation submitted to the Finnish Government in 2021, the design for backfilling was changed to a granular mixture consisting of bentonite (smectite) pellets crushed to various sizes, based on NAGRA’s buffer solution. In this study, as part of the preliminary design of the deep geological repository system in Korea, we reviewed history and its rationale for the design change of Finland’s deposition tunnel backfilling solution. After the construction license was granted by the Finnish Government in 2015, POSIVA conducted various lab- and full-scale in-situ tests to evaluate the producibility and performance of two design alternatives (i.e. block/pellet type and granular type) for backfilling. Principal demonstration tests and their results are summarized as follows: (a) Manufacturing of blocks using three types of materials (Friedland, IBeco RWC, and MX-80): Cracking and jointing under higher pressing loads were found. Despite adjusting the pressing process, similar phenomena were observed. (b) 1:6 scale experiment: Confirmation of density difference inhomogeneity due to the swelling of block/pellet backfill and void filling due to swelling behavior into the mass loss area of block/pellet. (c) FISST (Full-Scale In situ system Test): Identification of technical unfeasibility due to the inefficient (too manual) installation process of blocks/pellets and development of an efficient granular in-situ backfilling solution to resolve the disadvantage. (d) LUCOEX-FE (Large Underground Concept Experiments – Full-scale Emplacement) experiment: Confirmation of dense/homogeneous constructability and performance of granular backfilling solution. In conclusion, the simplified granular backfill system is more feasible compared to the block/ pellet system from the perspective of handling, production, installation, performance, and quality control. It is presumed that various experimental and engineering researches should be preceded reflecting specific disposal conditions even though these results are expected to be applied as key data and/or insights for selecting the backfilling solution in the domestic deep geological repository.
        9.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the design of HLW repositories, it is important to confirm the performance and safety of buffer materials at high temperatures. Most existing models for predicting hydraulic conductivity of bentonite buffer materials have been derived using the results of tests conducted below 100°C. However, they cannot be applied to temperatures above 100°C. This study suggests a prediction model for the hydraulic conductivity of bentonite buffer materials, valid at temperatures between 100°C and 125°C, based on different test results and values reported in literature. Among several factors, dry density and temperature were the most relevant to hydraulic conductivity and were used as important independent variables for the prediction model. The effect of temperature, which positively correlates with hydraulic conductivity, was greater than that of dry density, which negatively correlates with hydraulic conductivity. Finally, to enhance the prediction accuracy, a new parameter reflecting the effect of dry density and temperature was proposed and included in the final prediction model. Compared to the existing model, the predicted result of the final suggested model was closer to the measured values.
        4,000원
        10.
        2023.05 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS) for deep geological disposal of high-level radioactive waste requires a buffer material that can prevent groundwater infiltration, protect the canister, dissipate decay heat effectively, and delay the transport of radioactive materials. To meet those stringent performance criteria, the buffer material is prepared as a compacted block with high-density using various press methods. However, crack and degradation induced by stress relaxation and moisture changes in the compacted bentonite blocks, which are manufactured according to the geometry of the disposal hole, can critically affect the performance of the buffer. Therefore, it is imperative to develop an adequate method for quality assessment of the compacted buffer block. Recently, several non-destructive testing methods, including elastic wave measurement technology, have been attempted to evaluate the quality and aging of various construction materials. In this study, we have evaluated the compressive wave velocity of compacted bentonite blocks via the ultrasonic velocity method (UVM) and free-free resonant column method (FFRC), and analyzed the relationship among compressive wave velocity, dry density, thermal conductivity, and strength parameter. We prepared compacted bentonite block specimens using the cold isostatic pressure (CIP) method under different water content and CIP pressure conditions. Based on multiple regression analysis, we suggest a prediction model for dry density in terms of manufacturing conditions. Additionally, we propose an empirical model to predict thermal conductivity and unconfined compressive strength based on compressive wave velocity. The database and suggested models in this study can contribute to the development of quality assessment and prediction techniques for compacted buffer blocks used in the construction of a disposal repository.
        11.
        2023.05 구독 인증기관·개인회원 무료
        As Korea has relatively small land area and large population density compared to other countries considering the DGD concept such as Finland and Sweden, improvements of disposal efficiency in the viewpoint of the disposal area might be needed for the current disposal system to alleviate the difficulties of site selection for the HLW repository. In this research, we conduct a numerical investigation of the disposal efficiency enhancement for a high-level radioactive waste (HLW) repository through three design factors: decay heat optimization, increased thermal limit of buffer, and double-layer concept. In the optimized decay heat model, seven SNFs with the maximum and minimum decay heat depending on actual burn-up and cooling time are iteratively combined in a canister. Thermal limit of buffer is assumed as 100°C and 130°C for reference and high-efficiency repository concepts, respectively. By implementing an optimized decay heat model and a single-layer concept with a thermal limit of buffer set at 100°C, the disposal efficiency increases to 2.3 times of the improved Korean Reference disposal System (KRS+). Additionally, incorporating either an increased thermal limit of buffer to 130°C or a double-layer concept leads to a further 50% improvement in disposal efficiency. By integrating all three design factors, the disposal efficiency can be enhanced up to five times that of the KRS+ repository. Our analysis of rock mass stability reveals that increasing the thermal limit of buffer can generate rock spalling failure in a wider area. However, when accounting for the effect of confining stress by swelling of buffer and backfill using the Mohr-Coulomb failure criteria, the rock mass failure only occurred at the corner between the disposal tunnel and deposition hole when the thermal limit of buffer was increased and a single-layer concept was applied. The results given in this study can provide various options for designing the high-efficiency repository in accordance with the target disposal area and quality of the rock mass in the potential repository site.
        12.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300–1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.
        5,500원
        13.
        2022.10 구독 인증기관·개인회원 무료
        Gyeongju radioactive waste repository has been operated to dispose low and intermediate level radioactive waste in Korea since 2016. Currently, only deep geological disposal facility (1st) is in operation, surface disposal facility (2nd) is scheduled to operate from 2024. As a result, the annual amount of radioactive waste that can be disposed of at deep geological disposal facilities and surface disposal facilities is almost determined. According to this result, it was possible to derive the total annual disposal amount to dispose of all radioactive waste at the Gyeongju repository after landfill disposal facility (3rd) construction. To evaluate it, a predictive model has been designed and radioactive waste generation, storage, and disposal data were input. The predictive model is based on system dynamics, which is useful to analyze the correlation between input variables. As a result of analysis, radioactive waste generation amount and maximum annual radioactive waste disposal were predicted to reach 741,615 drum and 17,030 drum per year respectively. From these results, it seems that the expansion of radioactive waste acceptance system or temporary storage is necessary.
        14.
        2022.10 구독 인증기관·개인회원 무료
        Glass wool, the primary material of insulation, is composed of glass fibers and is used to insulate the temperature of steam generators and pipes in nuclear power plants. Glass fiber is widely adopted as a substitute for asbestos classified as a carcinogen. The insulations used in nuclear power plants are classified as radioactive waste and most of the insulation is Very Low-Level Waste (VLLW). It is packaged in a 200 L drum the same as a Dry Active Waste (DAW). In the case of the insulations, it is packaged in a vinyl bag and then charged into the drum for securing additional safety because of the fine particle size of the fiberglass. A safety assessment of the disposal facility should be considered to dispose of radioactive waste. As a result of analyzing overseas Waste Acceptance Criteria (WAC), there is no case that has a separate limitation for glass fiber. Also, in order to confirm that glass fibers can be treated in the same manner as DAW, research related to the diffusion of glass fibers into the environment was conducted in this paper. It was confirmed that the glass fiber was precipitated due to the low flow velocity of groundwater in the Gyeongju radioactive waste repository and did not spread to the surrounding environment due to the effect of the engineering barrier. Therefore, the glass fiber has no special issue and can be treated in the same way as a DAW. In addition, it can be disposed of in the disposal facility by securing sufficient radiological safety as VLLW.
        15.
        2022.10 구독 인증기관·개인회원 무료
        The analysis of uranium migration is crucial for the accurate safety assessment of high-level radioactive waste (HLW) repository. Previous studies showed that the migration of the uranium can be affected by various physical and chemical processes, such as groundwater flow, heat transfer, sorption/ desorption and, precipitation/dissolution. Therefore, a coupled Thermal-Hydrological-Chemical (THC) model is required to accurately simulate the uranium migration near the HLW repository. In this study, COMSOL-PHREEQC coupled model was used to simulate the uranium migration. In the model, groundwater flow, heat transfer, and non-reactive solute transport were calculated by COMSOL, and geo-chemical reaction was calculated by PHREEQC. Sorption was primarily considered as geo-chemical reaction in the model, using the concept of two-site protolysis nonelctrostatic surface complexation and cation exchange (2 SP NE SC/CE). A modified operator splitting method was used to couple the results of COMSOL and PHREEQC. Three benchmarks were done to assess the accuracy of the model: 1) 1D transport and cation exchange model, 2) cesium transport in the column experiment done by Steefel et al. (2002), and 3) the batch sorption experiment done by Fernandes et al. (2012), and Bradbury and Baeyens (2009). Three benchmark results showed reliable matching with results from the previous studies. After the validation, uranium 1D transport simulation on arbitrary porewater condition was conducted. From the results, the evolution of the uranium front with sequentially saturating sites was observed. Due to the limitation of operator splitting method, time step effect was observed, which caused the uranium to sorbed at further sites then it should. For further study, 3 main tasks were proposed. First, precipitation/ dissolution will be added to the reaction part. Second, multiphase flow will be considered instead of single phase Darcy flow. Last, the effect of redox potential will be considered.
        16.
        2022.10 구독 인증기관·개인회원 무료
        The structural integrity of concrete silos is important from the perspective of long-term operation of radioactive waste repository. Recently, the application of acoustic emission (AE) is considered as a promising technology for the systematic real-time health monitoring of concrete-like brittle material. In this study, the characteristics of AE wave propagation through concrete silo of Gyeongju radioactive waste repository were evaluated under the effects of groundwater and temperature for the quantitative damage assessment. The attenuation coefficients and absolute energies of AE waves were measured for the temperature cases of 15, 45, 75°C under dry and saturated concrete specimens, which were manufactured based on the concrete mix same as that of Gyeongju concrete silo. The geometric spreading and material loss were taken into account with regard to the wave attenuation coefficient. The attenuation coefficient shows a decreasing pattern with temperature rise for both dry and saturated specimens. The AE waves in saturated condition attenuate faster than those in dry condition. It is found that the effect of water content has a greater impact on the wave attenuation than the temperature. The results from this study will be used as valuable information for estimating the quantitative damage at the location micro-cracks are generated rather than the AE sensor location.
        17.
        2022.05 구독 인증기관·개인회원 무료
        To decrease area of the repository for high-level radioactive waste, enhancing the disposal efficiency is needed for public acceptance. Previous studies regarding the performance assessment of KRS and KRS+ repository did not consider area-based variations of the geothermal gradient and rock thermal properties in Korea. This research estimated deposition hole spacing based on performance assessment of a repository using the distribution of geothermal gradient and rock thermal properties in Korea to increase disposal efficiency. Distributions of geothermal gradient, rock thermal properties were investigated based on 2019 Korea geothermal atlas published by Korea Institute of Geoscience and Mineral Resources (KIGAM). Effect of thermal performance parameters was analyzed using coupled thermal-hydraulic numerical simulations, and effect of rock thermal conductivity and deposition hole spacing on the maximum temperature of buffer was relatively large. In addition, distribution maps of thermal performance of a repository and deposition hole spacing were plotted using thermal performance parameters-maximum temperature of buffer regression equations and GIS data given by KIGAM. In the regions showing the highest maximum temperature of buffer in Korea, required deposition hole spacings were 10.5 m, 10.0 m, 10.1 m, respectively for KJ-II, MX-80, and FEBEX bentonite cases, and thereby additional disposal area of 40%, 33.3%, and 34.7% were required compared to that of the KRS+ repository. On the other hand, high disposal efficiency can be obtained in the regions showing the low maximum temperature of bentonite buffer. The methodology provided in this research can be used as one of the references for the selection of domestic candidate repository sites. Additional mechanical performance analysis should be conducted using distributions of mechanical properties of rock mass in Korea.
        1 2