In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.
Today, the principles of green chemistry are being fundamentally applied in the chemical industry, such as the nitrobenzene industry, which is an essential intermediate for various commercial products. Research on the application of response surface methodology (RSM) to optimize nitrobenzene synthesis was conducted using a sulfated silica (SO4/SiO2) catalyst and batch microwave reactor. The nitrobenzene synthesis process was carried out according to RSM using a central composite design (CCD) design for three independent variables, consisting of sulfuric acid concentration on the silica (%), stirring time (min), and reaction temperature (°C), and the response variable of nitrobenzene yield (%). The results showed that a three-factorial design using the response surface method could determine the optimum conditions for obtaining nitrobenzene products in a batch microwave reactor. The optimum condition for a nitrobenzene yield of 63.38 % can be obtained at a sulfuric acid concentration on the silica of 91.20 %, stirring time of 140.45 min, and reaction temperature of 58.14 °C. From the 20 experiments conducted, the SO4/SiO2 catalyst showed a selectivity of 100 %, which means that this solid acid catalyst can potentially work well in converting benzene to nitrobenzene.
To investigate the effect of the catalyst and metal–support interaction on the methane decomposition behavior and physical properties of the produced carbon, catalytic decomposition of methane (CDM) was studied using Ni/SiO2 catalysts with different metal–support interactions (synthesized based on the presence or absence of urea). During catalyst synthesis, the addition of urea led to uniform and stable precipitation of the Ni metal precursor on the SiO2 support to produce Ni-phyllosilicates that enhanced the metal–support interaction. The resulting catalyst upon reduction showed the formation of uniform Ni0 particles (< 10 nm) that were smaller than those of a catalyst prepared using a conventional impregnation method (~ 80 nm). The growth mechanisms of methane-decomposition-derived carbon nanotubes was base growth or tip growth according to the metal–support interaction of the catalysts synthesized with and without urea, respectively. As a result, the catalyst with Ni-phyllosilicates resulting from the addition of urea induced highly dispersed and strongly interacting Ni0 active sites and produced carbon nanotubes with a small and uniform diameter via the base-growth mechanism. Considering the results, such a Ni-phyllosilicate-based catalyst are expected to be suitable for industrial base grown carbon nanotube production and application since as-synthesized carbon nanotubes can be easily harvested and the catalyst can be regenerated without being consumed during carbon nanotube extraction process.
In this study, lanthanum boron silicate glasses were prepared with a composition of x Li2O-(60-x)B2O3-5CaO- 5BaO-7ZnO-10SiO2-10La2O3-3Y2O3 where x = 1,3,5,7, and 9 mol%. Each composition was melted in a platinum crucible under atmospheric conditions at 1,400 °C for 2 h. Clear glasses with a transmittance exceeding 85 % were fabricated. Their optical, thermal, and physical properties, such as refractive index, Abbe number, density, glass transition (Tg) and Knoop hardness were studied. The results demonstrated that refractive index was between 1.6859 and 1.6953 at 589.3 nm. The Abbe number was calculated using an equation for 589.3 nm (nd), 656.3 nm (nf) and 486.1 nm (nc) and was observed to be in the range from 57.5 to 62.6. As the Li2O content increased, the glass transition temperature of the optical glass decreased from 608 °C to 564 °C. If glass mold pressing is performed using a material with a low transition temperature and high mechanical strength, then the optical glasses developed in this study can be completely commercialized.
Nanosized rutile titanium dioxide (TiO2) is used in inorganic pigments and cosmetics because of its high whiteness and duality. The high quality of the white pigments depends on their surface coating technique via the solgel process. SiO2 coatings are required to improve the dispersibility, UV-blocking, and whiteness of TiO2. Tetraethyl orthosilicate (TEOS) is an important coating precursor owing to its ability to control various thicknesses and densities. In addition, we use Na2SiO3 (sodium silicate) as a precursor because of its low cost. Compared to TEOS, which controls the pH using a basic catalyst, Na2SiO3 controls the pH using an acid catalyst, giving a uniform coating. The coating thickness of TiO2 is controlled using a surface modifier, cetrimonium bromide, which is used in various applications. The shape and thickness of the nanosized coating layer on TiO2 are analyzed using transmission electron microscopy, and the SiO2 nanoparticle behavior in terms of the before-and-after size distribution is measured using a particle size analyzer. The color measurements of the SiO2 pigment are performed using UV-visible spectroscopy.
Preparation of advanced functional materials from agricultural waste by eco-friendly processing route is inevitable for sustainable development. This work demonstrates the development of carbon/silica (C/SiO2) and carbon/silicon carbide (C/ SiC) composite foam monoliths of low thermal conductivity, high EMI shielding performance and reasonable compressive strength from rice husk. The C/SiO2 and C/SiC composite foams are obtained by carbonization and subsequent carbothermal reduction, respectively, of rice husk–sucrose composites consolidated by filter-pressing rice husk powder dispersed in sucrose solutions of various concentrations (300–600 g L− 1). The amorphous nature of silica in C/SiO2 and the presence of β-SiC in C/SiC are evidenced from XRD and TEM analysis. The compressive strength and thermal conductivity are depending on the foam density which is tailored by sucrose solution concentration. The compressive strength in the ranges of 0.32–1.67 and 0.19–1.19 MPa are observed for C/SiO2 and C/SiC foams, respectively, with density in the ranges of 0.26–0.37 and 0.18–0.29 g cm− 3. The C/SiO2 and C/SiC exhibited thermal conductivity in the ranges of 0.150–0.205 W m− 1 K− 1 and 0.165–0.431 W m− 1 K− 1, respectively. The C/SiO2 and C/SiC composite foams show absorption dominated EMI shielding effectiveness in the ranges of 18–38.5 dB and 20–43.7 dB, respectively. The inherent pore channels and corrugated surface structure in rice husk, electrically conducting carbon and dielectric SiO2 and SiC contribute to the total EMI shielding.
This study is aimed at preparing and evaluating the plasma resistance of YAS (Y2O3-Al2O3-SiO2) coating layer with crystalline YAG phase contents. For this purpose, YAS frits with controlled phase contents are prepared and melt-coated on sintered Al2O3 ceramics. Then, the results of phase analysis of crystalline YAS coating layer are compared to that of YAS frits, and discussed with regard to the plasma resistance of the YAS coating layer. The phase contents of the YAS frit change in a manner different from that of the prepared YAS coating layer, presumably owing to the composition change of YAS frit during the melt-coating process. The plasma resistance of the YAS coating layer is shown to increase with the YAG phase contents in the coating layer. Comparing the weight loss of YAS coating layer with those of commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the prepared YAS coating layer is 8 times higher than that of quartz and 3 times higher than that of Al2O3; this layer shows 70 % of the resistance of Y2O3.
The various sintered samples comprising of 72 wt%(Al2O3) : 28 wt%(SiO2) based ceramics were fabricated using a colloidal processing route. The phase analysis of the ceramics was performed using an X-ray diffractometer (XRD) at room temperature confirming the presence of Al2O5Si and Al5.33Si0.67O9.33. The surface morphology of the fracture surface of the different sintered samples having different sizes of grain distribution. The resistive and capacitive properties of the three different sintered samples at frequency sweep (1 kHz to 1 MHz). The contribution of grain and the non-Debye relaxation process is seen for various sintered samples in the Nyquist plot. The ferroelectric loop of the various sintered sample shows a slim shape giving rise to low remnant polarization. The excitation performance of the sample at a constant electric signal has been examined utilizing a designed electrical circuit. The above result suggests that the prepared lead-free ceramic can act as a base for designing of dielectric capacitors or resonators.
In this paper, the heat transfer performance of nanofluids is predicted by numerical analysis methods. The nanoparticles used in this study is SiO2, with concentrations of 1, 2, 3vol.%, and the base fluid is water. Reynolds number of nanofluids ranges from 10,000 to 50,000. A numerical study on the heat transfer characteristics of nanofluid was conducted using a single-phase model. The temperature of the fluid entering from the inlet of the tube is 293.15K. A constant heat flux of 31,650W/m2 was applied at the wall, and the thickness of the wall was ignored. Heat transfer coefficients, thermal conductivity and Nusselt number were selected as indicators for comparing heat transfer performance of nanofluids. As the nanofluid concentration increases, the temperature and velocity distribution by the cross section of the coil tube and straight tube increased. As the Reynolds number increases, temperature difference between inner direction and outer direction reduced in coil tube. For straight tube, the temperature difference between the wall and the center of the tube also decreased.
This study is aimed at improving the plasma resistance of Al2O3 ceramics on which plasma resistant YAS(Y2O3- Al2O3-SiO2) frit is melt-coated using a simple heat-treatment process. For this purpose, the results of phase analysis and microstructural observations of the prepared YAS frits and the coating layers on the Al2O3 ceramics according to the batch compositions are compared and discussed with regard to the results of plasma resistance test. The prepared YAS frits consist of crystalline or amorphous or co-existing crystalline and amorphous phases according to the batch compositions, depending on the role and content of each raw material. The prepared YAS frit is melt-coated on the densely sintered Al2O3 ceramics, resulting in a dense coating layer with a thickness of at least ~ 80 m. The YAS coating layer consists of crystalline YAG(Y3Al5O12), Y2Si2O7, and Al2O3 phases, and YAS glass phase. Plasma resistance of YAS coated Al2O3 ceramics is strongly dependent on the content of the YAG(Y3Al5O12) and Y2Si2O7 crystalline phases in the coating layer, especially on the content of the YAG phase. Comparing the weight loss of YAS coating ceramics with values obtained for commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the YAS coating ceramics is 6 times higher than that of quartz, 2 times higher than that of Al2O3, and 50 % of the resistance of Y2O3.
To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the SiO2/Al2O3 ratios of zeolites. The acidity of the flexible zeolite fibers with different SiO2/Al2O3 ratios is measured by ammonia-temperature-programmed desorption (NH3-TPD), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher SiO2/ Al2O3 ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.
To improve the etch rate of Si3N4 thin film, H2SiF6 is added to increase etching rate by more than two times. SiO3H2 is gradually added to obtain a selectivity of 170: 1 at 600 ppm. Moreover, when SiO3H2 is added, the etching rate of the SiO2 thin film increases in proportion to the radius of the wafer. In Si3N4 thin film, there is no difference in the etching rate according to the position. However, in the SiO2 thin film, the etching rate increases in proportion to the radius. At the center of the wafer, the re-growth phenomenon is confirmed at a specific concentration or above. The difference in etch rates of SiO2 thin films and the reason for regrowth at these positions are interpreted as the result of the flow rate of the chemical solution replaced with fresh solution.
In this study, the effect of the content of MgO-CaO-Al2O3-SiO2 (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to 1600℃. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over 70 W/m·K and a dielectric loss tangent (tan δ) below 0.6 × 10−3, with up to 10 wt% MCAS content.
Highly self-cleaning thin films of TiO2-SiO2 co-doped with Ag and F are prepared by the sol-gel method. The asprepared thin films consist of bottom SiO2 and top TiO2 layers which are modified by doping with F, Ag and F-Ag elements. XRD analysis confirms that the prepared thin film is a crystalline anatase phase. UV-vis spectra show that the light absorption of Ag-F-TiO2/SiO2 thin films is tuned in the visible region. The self-cleaning properties of the prepared films are evaluated by a water contact angle measurement under UV light irradiation. The photocatalytic performances of the thin films are studied using methylene blue dye under both UV and visible light irradiation. The Ag-F-TiO2/SiO2 thin films exhibit higher photocatalytic activity under both UV and visible light compared with other samples of pure TiO2, Ag-doped TiO2, and F-doped TiO2 films.
In this study, MgO–CaO–Al2O3–SiO2 (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of 40 m2/g is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above 1,300oC via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at 1,600oC, which is a reduction in sintering temperature by 200oC compared to conventional AlN-Y2O3 systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at 1,600oC, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of 82.6 W/m·K at 1,600oC.