(PDDA/SiO2) thin films that consisted of positively charged poly (diallyldimethylammonium chloride) (PDDA) and negatively charged SiO2 nanoparticles were fabricated on a glass substrate by an applying voltage layer-by-layer (LBL) self-assembly method. In this study, the microstructure and optical properties of the (PDDA/SiO2) thin films coated on glass substrate were measured as a function of the applied voltage on the Pt electrodes. When 1.0 V was applied to a Pt electrode in a PDDA and SiO2 solution, the thickness of the (PDDA/SiO2)10 thin film increased from 79 nm to 166 nm. The surface roughness also increased from 15.21 nm to 33.25 nm because the adsorption volume of the oppositely charged PDDA and SiO2 solution increased. Especially, when the voltage was applied to the Pt electrode in the SiO2 solution, the thickness increase of the (PDDA/SiO2) thin film was larger than that obtained when using the PDDA solution. The refractive index of the fabricated (PDDA/SiO2) thin film was ca. n = 1.31~1.32. The transmittance of the glass substrate coated by (PDDA/SiO2)6 thin film with a thickness of 106 nm increased from ca. 91.37 to 95.74% in the visible range.
Pt nanopowder-dispersed SiO2 (SOP) films were prepared by RF co-sputtering method using Pt and SiO2 targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of SiO2 was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.
Silica-based ceramic-matrix composites have shown promise as advanced materials for many applications such as chemical catalysts, ceramics, pharmaceuticals, and electronics. SiO2-CuO-CeO2 multi-component powders and their thin film, using an oxalic acid template as a chelating agent, have larger surface areas and more uniform pore size distribution than those of inorganic acid catalysts. SiO2-CuO-CeO2 composite powders were synthesized using tetraethylorthosilicate, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate with oxalic acid as template or pore-forming agent. The process of thermal evolution, the phase composition, and the surface morphology of these powders were monitored by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrometry (EDXS). The mesoporous property of the powders was observed by Brunner-Emmett-Teller surface (BET) analysis. The improved surface area of this powder template with oxalic acid was 371.4m2/g. This multi-component thin film on stainless-steel was prepared by sol-gel dip coating with no cracks.
This paper has relatively high technical standard and experimental skill. The fabrication of TCO film with hightransparency, low resistance and low chromaticity require exact control of several competing factors. This paper has resolvedthese problems reasonably well, thus recommended for publication. Indium tin oxide(ITO) thin films were by D.C. magnetronroll-to-roll sputter system utilizing ITO and SiO2 targets of ITO and SiO2. In this experiment, the effect of D.C. power, windingspeed, and oxygen flow rate on electrical and optical properties of ITO thin films were investigated from the view point ofsheet resistance, transmittance, and chromaticity(b*). The deposition of SiO2 was performed with RF power of 400W, Ar gasof 50sccm and the deposition of ITO, DC power of 600W, Ar gas of 50sccm, O2 gas of 0.2sccm, and winding speed of 0.56m/min. High quality ITO thin films without SiO2 layer had chromaticity of 2.87, sheet resistivity of 400ohm/square, and trans-mittance of 88% and SiO2-doped ITO Thin film with chromaticity of 2.01, sheet resistivity of 709ohm/square, and transmittanceof more than 90% were obtained. As a result, SiO2 was coated on PET before deposition of ITO, their chromaticity(b*) andtransmittance were better than previous results of ITO films. These results show that coating of SiO2 induced arisingchromaticity(b*) and transmittance. If the thickness of SiO2 is controlled, sheet resistance value of ITO film will be expected tobe better for touch screen. A four point probe and spectrophotometer are used to investigate the properties of ITO thin films.
Silicon dioxide as gate dielectrics was grown at 400˚C on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of O2 and N2O to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature N2O annealing, nitrogen can be supplied to the Si/SiO2 interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/SiO2 interface by plasma oxidation as the N2O molecule is broken in the plasma and because a dense Si-N bond is formed at the SiO2 surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the Si/SiO2 interface by the plasma oxidation of mixtures of O2/N2O gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.