과불화화합물(PFAS)은 우수한 내열성, 발수성, 내유성을 지닌 합성 화학물질로, 다양한 산업 분야에서 광범위하게 사용되어 왔다. 그러나 이러한 무분별한 사용은 PFAS의 높은 화학적 안정성과 생물학적 축적성을 초래하며, 반도체 산업을 포함한 다양한 산업 활동에서 배출되는 폐수를 통해 생태계와 인류 건강에 심각한 위협을 초래하고 있다. 본 연구는 PFAS 중 대표적인 과불화옥탄산(PFOA)와 과불화옥탄설폰산(PFOS)를 중심으로 다양한 수처리 기술을 검토⋅분류하고, 각 기술의 메커니즘, 최신 연구 사례, 한계점 등을 종합적으로 분석하였다. 물리적 처리 기술로는 입상 및 분말 형태의 활성탄을 활용한 흡착법과, 나노여과(NF) 및 역삼투(RO)를 기반으로 한 막여과 기술이 포함되며, 화학적 처리 기술로는 고도 산화⋅환원 공정, 특히 붕소 도핑 다이아몬드(BDD) 전극을 이용한 전기화학적 산화 기술에 중점을 두었다. 이외에도 생물학적 처리 기술, Feammox 반응, 이온 교환 수지, 플라즈마 처리 등의 최신 기술의 적용사례와 PFAS 제거 메커니즘을 분석하였다. 특히, 최근에는 개별 기술의 한계를 보완하기 위한 상호보완적 융합 방식의 복합 공정 전략이 주목받고 있다. 본 논문은 이와 같이 다양한 수처리 기술에 대한 연구 동향을 분석함으로써, PFAS 제거를 위한 수처리 기술에 대한 통합적 이해와 실질적인 적용 가능성에 대한 통찰을 제공하고자 한다.
본 연구는 중소규모 고도정수처리시설(Y 정수장)에 적용된 세라믹막 여과공정의 운영 효율을 평가하고, 막오염의 주요 원인을 규명하며 실질적인 개선 방안을 제시하는 것을 목적으로 한다. 최근 세라믹막은 내구성과 내약품성이 우수하여 전오존 및 입상활성탄(GAC) 공정과의 조합에 적합한 기술로 주목받고 있으나, 막차압(TMP) 상승 및 장기 안정운영에 어려움이 존재한다. 본 연구에서는 2017년 실제 운영 데이터를 바탕으로, 망간 및 용존유기탄소(DOC)를 중심으로 한 원수 수질과 TMP 변화 간의 상관관계를 분석하였다. 그 결과, 수온역전이 발생하는 봄⋅가을철에 조류와 망간 농도가 증가하면서 TMP가 급상승하는 경향이 확인되었다. 또한 LC-OCD 분석을 통해 조류 유입 시기에는 바이오폴리머 농도가 증가하며 막오염에 직접적인 영향을 미치는 것으로 나타났다. 화학세정 실험에서는 pH 0.7의 황산이 망간, 철, 알루미늄 등의 무기성 침착물 제거에 가장 효과적인 것으로 확인되었으며, 세정 조건의 최적화 필요성이 강조되었다. 아울러 여과 유속의 불균형 및 계열 간 부하 집중이 TMP 상승에 영향을 미치는 주요 요인으로 분석되었고, 이에 따라 유량 제어 및 청정 주기 조정 등의 개선 전략이 제시되었다. 본 연구는 세라믹막 여과공정의 파울링 특성과 제어방안을 실증적으로 규명하였으며, 계절적 수질 변동에 대응하는 정수처리시설의 효율적인 운영 및 설계에 기초자료로 활용될 수 있을 것이다.
The swelling capacity of bentonite buffers is vital in high-level radioactive waste (HLW) repositories, as it minimizes groundwater infiltration, prevents nuclides from reaching the biosphere, and stabilizes the HLW canisters. As swelling capacity is a function of temperature, understanding bentonite’s behavior at approximately 100°C (its presumed upper limit) is essential. However, research on this subject has been scarce. Hence, this study explored the effects of thermal treatment of Ca-bentonite at 105°C under injected water pressures. The results suggest a 19% reduction in “swell index” and a 35%–36% decrease in the total pressure in thermally treated bentonite. The heated samples demonstrated higher hydraulic conductivity than the non-heated ones, indicating potential performance deterioration in controlling the fluid movement. Furthermore, the injected water pressure (base pressure) was not fully transmitted to the sample owing to the difference between the base and back pressures, leading to variations in the total pressure despite maintaining a constant differential pressure. Thus, the results demonstrated a degradation in bentonite’s swelling capacity and its compromised role in safe HLW disposal, when subjected to treatment at 105°C. The insights from this research can assist in HLW repository design, while highlighting the need for further research into bentonite’s performance.
본 연구는 조류가 발생하는 낙동강에 위치한 정수장에서 남세균 및 마이크로시스틴(MC)을 분석하였다. 마이크로시스틴 분석을 위한 독소 추출 방법의 효과를 확인하였다. 정수처리 공정별로 취수원수, 착수정수, 전오존 처리수, 응집⋅침전 처리수, 여과 처리수, 정수의 수질을 분석한 결과, 탁도와 클로로필-a 농도는 공정 진행에 따라 크게 감소하며 남세균이 효과적으로 제거되었음을 확인하였다. 마이크로시스틴 분석을 위해 세포 내 독소 추출을 위한 초음파 처리, 동결/해동법, 메탄올 추출법을 비교한 결과, 동결/해동법이 가장 효과적인 것으로 나타났으며, 메탄올 추출법은 상대적으로 낮은 추출 효율을 보였다. 본 연구 수행 시 남세균이 충분히 발생하지 않아 모든 샘플에서 마이크로시스틴이 검출되지 않았다. 따라서 고농도 남세균 발생시 정수장 공정별 남세균 및 독소 농도에 대한 후속 연구가 반드시 필요하다고 생각된다. 정수처리공정은 남세균과 독소를 제거하는 데 있어서 가장 중요한 부분이며 공정에서의 남세균과 독소의 제거 능력을 정확히 분석하는 것이 중요하다.
본 연구는 페튜니아(Petunia×hybrida)의 내건성 증진을 위 해 스트레스 메모리 기작을 활용한 프라이밍 처리의 효과를 구명 하고자 하였다. 건조-회복 과정을 통한 프라이밍 처리를 4회 반복 수행하였고, 두 가지 프라이밍 강도(Priming1:물 100mL, Priming2: 물 50mL 관수 후 건조)를 적용한 후 5일 동안 건조스 트레스 조건에서 내성 증진 효과를 관찰하였다. 프라이밍 강도가 높은 Priming2 처리구에서 대조군에 비해 수명이 약 25시간 연장되었다. 이는 페튜니아가 스트레스 메모리 기작을 통해 건조 스트레스에 대한 내성을 높일 수 있음을 보여준다. 본 연구는 정원 식물의 환경 스트레스 내성을 증진시키기 위한 프라이밍 기술의 유용성을 확인하였으며, 향후 다양한 환경 스트레스 조건 에서의 프라이밍 효과를 평가함으로써 화훼식물의 내건성 증진 에 대한 실용적 기술 개발에 기여할 수 있을 것으로 기대된다.
This study explores the innovative utilization of a biomimetic electric ray friction nanogenerator (ER-TENG) in combination with electrolysis technology for the remediation of maritime effluent. The ER-TENG is ingeniously crafted with a flexible, planar structure, enabling seamless adaptation to various curved and irregular substrates such as rocks, corals, and shipwrecks on the ocean floor, obviating the necessity for specialized mounting or securing devices. Simulation results regarding the potential distribution between the copper electrode and the PDMS film under different inter-electrode distances indicate that an increase in separation distance is correlated with an enhanced potential difference on the material's surface, exhibiting a linear upward trend, with the maximum potential difference reaching 120 V. When TiO2 nanoparticles are incorporated at a doping mass fraction of 4.65 wt%, the friction nanogenerator attains its peak electrical performance, boasting a peak opencircuit voltage of 123.25 V and a maximum short-circuit current of 13.52 μA, representing increases of 2.73-fold and 2.56-fold in open-circuit voltage and short-circuit current, respectively. At operational frequencies of 1.2 Hz and 1.0 Hz, the initial stage of sterilization rate enhancement proceeds at a moderate pace. However, after 60 minutes of electrolysis, sterilization rates reach 88.12% and 46.36%, respectively. The electrical energy harvested by the ER-TENG facilitates the generation of potent oxidizing chlorine through electrolysis, which effectively eliminates harmful aquatic organisms and pathogens present in ship ballast water.
We have performed an experiment to evaluate the efficacy of salt and hot water treatments in soil for managing situations where high-risk plant-parasitic nematodes (PPNs) are detected in farms and flower shops that cultivate foliage plants. The density of Pratylenchus penetrans was reduced by 100% with salt treatments of 20 and 40 kg m-2, while decreases of 95% and 99.8% were observed with treatments of 5 and 10 kg m-2, respectively. In the hot water treatment, Pratylenchus penetrans decreased by 97.6% compared to the initial density. The salt treatment resulted in a decrease in pH and an increase in electrical conductivity (EC) compared to untreated soil. However, other characteristics, including organic matter content, available phosphorus, total nitrogen (T-N) rate, and exchangeable cations, did not differ from the control. In the case of hot water treatment, all properties were similar to those in the untreated group. As a result of this study, salt applications of more than 20 kg m-2 and hot water at 96°C could serve as effective control methods when high-risk PPNs are detected in flower shops and greenhouses located in urban or near-urban areas.
In treatment processes of drinking water, the use of disinfectants is essential for eliminating microorganisms and pathogenic viruses. Chlorine dioxide (ClO2) is one of the most promising disinfectants. To ensure its effective application in drinking water treatment, it is crucial to investigate the stability and reactivity of ClO2 in drinking water treatment environments. Therefore, we examined the effects of various environmental factors such as temperature, light type, fluorescence intensity, and water quality on its stability. We also examined its reactivity with activated carbon and other inorganic compounds such as coagulants and hypochlorous acid. Findings revealed that ClO2 stability was influenced by several environmental factors. Typically, ClO2 is highly volatile. However, the rate of its volatility is independent of its concentration. As temperature and fluorescent light intensity increased, the concentration of ClO2 showed a rapid decline. Additionally, the presence of activated carbon significantly reduced ClO2 levels. In contrast, the reactivity of ClO2 with coagulants and hypochlorous acid was negligible. These findings provide essential insights for optimizing the use of ClO2 in drinking water treatment facilities.
Chironomid larvae in drinking water treatment plants (DWTPs) and tap water lead to highlights the urgent need for effective control measures. The use of combined disinfectant treatments is becoming increasingly common to achieve optimal disinfection efficiency while minimizing residual contamination. This study was conducted to study the effect of combined treatment of disinfectants used in DWTPs on the biological control potential of chironomid larvae. In the experiment, Glytotendipes tokunagai larvae reared according to OECD guidelines were exposed to NaOCl, UV, and O3 complex substances, and biological responses were analyzed using survival rate and body color change as key indicators for 24 hours. The survival rate of larvae exposed to combined disinfectants mostly decreased in a time- and concentration-dependent manner, and lightening of body color was observed. The most significant decrease (53%) of the survival rate was observed to a combination of UV and 4 ppm NaOCl disinfectants and body color change also showed a statistically significant difference compared to the control group (P<0.001). The change in body color is suggested to be a physiological change caused by oxidation of hemoglobin due to exposure to disinfectant complexes. The results of this study contribute to determining the biological impact of combined disinfectant treatment on chironomid larvae of DWTPs, and can be used as data to suggest the biological control potential of disinfectants. In addition, it will provide important information for setting standards for combined disinfectant treatment to improve water quality in the future.
The cost of treating water purification plant water treatment residuals is high, with a low recovery rate and unstable effluent water quality, particularly in plants using lake and reservoir water sources in severe cold regions. Maximizing water resource utilization requires integrating water treatment residuals concentration and treatment effectively. Here, ceramic membrane technology was employed to separate supernatant and substrate after pretreatment. Optimal settling was achieved using 75 μm magnetic powder at 200 and 4 mg/L of nonionic polyacrylamide co-injection. Approximately 65% of the separated supernatant was processed by 0.1–0.2 μm Al2O3 ceramic membranes, yielding a membrane flux of 50 L/m2h and a water recovery rate of 99.8%. This resulted in removal rates of 99.3% for turbidity, 98.2% for color, and 87.7% for color and permanganate index (chemical oxygen demand, COD). Furthermore, 35% of the separated substrate underwent treatment with 0.1–0.2 μm mixed ceramic membranes of Al2O3 and SiC, achieving a membrane flux of 40 L/m2h and a water recovery rate of 73.8%. The removal rates for turbidity, color, and COD were 99.9%, 99.9%, and 82%, respectively. Overall, this process enables comprehensive concentration and treatment integration, achieving a water recovery rate of 90.7% with safe and stable effluent water quality.
The number, size, and material distribution of microplastics (MPs) sized 20-200 μm in the raw water and water treatment processes were analyzed using FT-IR in three water treatment plants in Jeju Province. The number of MPs was detected at 0.075-0.620 MP/L in raw water and 0.040-0.047 MP/L in filtered water, which is relatively lower than the results of other studies. Regarding the size of the MPs, particles sized 20-50 μm in both the raw water and the treated water accounted for the highest proportion, representing 65.6% and 56.3% of the total, respectively. In terms of MP type distribution, polypropylene (PP) was identified as the main type at 58.7%. In the water purification process, the MPs removal efficiency was the highest at 93.5% in the sedimentation and rapid filtration process, followed by 58.4% in membrane filtration and 40.0% in slow filtration. Continuous monitoring of the distribution of MPs in raw water and water treatment processes is recommended.
This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
This study evaluated the fungicidal efficacy of weakly acidic hypochlorous acid water (WAHW) against Microsporum canis (M. canis) and its therapeutic effect on M. canis-infected mouse skin. WAHW was produced by a WAHW generation module. A fungicidal efficacy test by the broth dilution method was used to determine the lowest effective concentration of the WAHW. The lowest effective concentration of WAHW was less than 10 ppm. For T-1, T-2, and T-3, 30 ppm of WAHW was applied to the infected skin once, twice, and three times a day, respectively, and for T-4, 50 ppm of WAHW was applied once a day. On the 3rd day after the initiation of treatment, skin scores in all of the WAHW-treated groups were significantly decreased compared to those in the positive control group (PC) (p<0.05), and there were no significant differences compared to the normal control (NC). The area of the infected skin in all of the WAHW-treated groups was significantly decreased compared to PC from the first day after the initiation of WAHW treatment (p<0.05). The results showed that WAHW had a fungicidal efficacy on M. canis at less than 10 ppm, and it was effective in improving skin symptoms when 30 ppm of WAHW was applied to the M. canis-infected area once a day for five days or 50 ppm of WAHW was applied once a day.