Understanding changes in fermentation characteristics and microbial populations of forage silage during ensiling is of interest for improving the nutrient value of the feed for ruminants. This study was conducted to investigate the changes in fermentation characteristics and bacterial communities of whole crop rice (WCR) silage during the ensiling period. The chemical compositions, pH, organic acids and bacterial communities were evaluated at 0, 3, 6, and 12 months after ensiling. The bacterial communities were classified at both the genus and species levels. The dry matter content of WCR silage decreased with the length of storage (p<0.05), but there was no significant difference in crude protein and NDF contents. Following fermentation, the pH level of WCR silage was lower than the initial level. The lactic acid content remained at high levels for 3 to 6 months after ensiling, followed by a sharp decline at 12 months (p<0.05). Before fermentation, the WCR was dominated by Weissella (30.8%) and Pantoea (20.2%). Growth of Lactiplantibacillus plantarum (31.4%) was observed at 3 months after ensiling. At 6 months, there was a decrease in Lactiplantibacillus plantarum (10.2%) and an increase in Levilactobacillus brevis (12.8%), resulting in increased bacteria diversity until that period. The WCR silage was dominated by Lentilactobacillus buchneri (71.2%) and Lacticaseibacillus casei (27.0%) with a sharp reduction in diversity at 12 months. Overall, the WCR silage maintained satisfactory fermentation quality over a 12-month ensiling period. Furthermore, the fermentation characteristics of silage were found to be correlated to bacterial microbiome.
홀스타인 착유우에 수입건초 대신 WCRS로 조사료 일부를 대 체 급여하였을 때 산유성적 및 수익성에 미치는 영향을 검토하였 다. 대조구(C)는 농가 관행 급여방법으로 자가 혼합건초(13kg)와 농후사료(2.6~9.6kg), 오차드그라스 및 버뮤다그라스 건초(1.8kg) 를 급여 하였고, 처리구(T)는 자가 혼합건초(9.6kg)와 농후사료 (2.6~9.6kg) 및 WCRS (2.2kg)를 급여하였다. 건물수량(DMI)을 기준으로 C에 대한 T의 조사료 대체비율은 20% 였다. CP함량은 오차드그라스 및 버뮤다그라스 건초가 각각 11.3 및 8.4%였고, WCRS는 4.6%로, WCRS에서 낮았다. 이는 벼를 수확적기보다 약 30일정도 늦게 수확한 것에 기인하고 있다. DMI는 비유초기, 중기 및 후기에서 각각 T가 C보다 유의적으로 낮게 나타났다 (p<0.05). 유량은 비유초기, 중기 및 후기 모두 처리간 유의적 차 이는 없었다(p>0.05). 실험 기간 중 평균유량도 C 및 T가 각각 26.9 및 26.3kg으로 처리간 유의적인 차이는 없었다(p>0.05). 유 지율, 유단백 및 총고형물에서 각 비유기 공히 처리 간에 유의적 인 차이는 없었다(p>0.05). 두당 조수입은 C가 21,141원, T가 21,915원으로 T에서 다소 높게 나타났다. 유사비는 T가 22.9%로 C의 27.8%보다 낮았다. 이상에서 수입산 건초 대신 WCRS로 20% 대체 급여하여도 산유량 및 유성분에 유의적인 차이가 없으 며 수익은 높아 경제성이 있는 것으로 사료된다.
The present study investigated effects of microbial additives and silo density on chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) silage. The WCR (“Youngwoo”) was harvested at 49.7% dry matter (DM), and ensiled into 500 kg bale silo with two different compaction pressures at 430 kgf (kilogram-force)/cm2 (LOW) and 760 kgf/cm2 (HIGH) densities. All WCR forage were applied distilled water (CON) or mixed inoculants (Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1) with 1:1 ratio at 1x105 colony forming unit/g (INO). The concentrations of DM, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 49.7, 9.59, 2.85, 6.74, 39.7, and 21.9%, respectively. Microbial additives and silo density did not affect the chemical compositions of WCR silage (p>0.05). The INO silages had lower lactate (p<0.001), but higher propionate (p<0.001). The LOW silages had higher lactate (p=0.004). The INO silages had higher yeast count (p<0.001) and aerobic stability (p<0.001). However, microbial counts and aerobic stability were not affected by silo density. Therefore, this study concluded that fermentation quality of WCR silage improved by microbial additives, but no effects by silo density.
This study was conducted to estimate the effect of different cutting lengths on fermentation characteristics and aerobic stability of whole crop rice (WCR) silage. The WCR was harvested at the yellow ripe stage (43.7%, DM), and then cut at 5 (R05), 10 (R10), and 20 cm (R20) of the theoretical length of cut with no cut WCR (R60). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 150 days in quadruplicates. The cutting lengths were not affected the chemical compositions of WCR silage (p > 0.05). The pH (p < 0.001) and concentration of ammonia-N (p = 0.022) in WCR silage were increased linearly with the increase of cutting length. The concentration of lactate had quadratic effect (p = 0.007), which was highest in R20 silage (p < 0.05). The concentration of acetate was increased linearly (p = 0.014), but the concentration of butyrate was decreased linearly (p = 0.033). The lactic acid bacteria count was decreased linearly (p = 0.017), and yeast count had quadratic effect (p = 0.009), which was the highest in R20 silage (p < 0.05). Aerobic stability had strong quadratic effect (p < 0.001), which was the highest in R20 silage (p < 0.05). In conclusion, R60 silage had highest pH by a linear increase of ammonia-N concentration and led to low aerobic stability. While R20 silage had the lowest pH by high lactate concentration and led to high aerobic stability.
This study was to evaluate the feed value of whole crop rice silage (WCRS) and to investigate a suitable ratio of the WCRS and concentrate by an analysis of rumen fermentation. A total of 6 treatments were used according to WCRS: concentrate ratio on in vitro rumen fermentation: T1 (100:0), T2 (60:40), T3 (40:60), T4 (20:80), T5 (10:90), and T6 (0:100). The ruminal pH, total gas emission, ammonia nitrogen, and volatile fatty acid (VFA) were determined as fermentation parameters. Total nutrients digestibility trial was conducted by 4 treatments according to WCRS: concentrate ratio at 40:60 (W40), 20:80 (W20), and 10:90 (W10), respectively. Feed value was analyzed according to AOAC (2019) and nutrient digestibility was calculated based on NRC (2001). The levels of crude protein (CP), crude fat, and neutral detergent fiber of the WCRS were 12.29%, 1.67%, and 59.79%, respectively. It was found to be 51.49% as a result of predicting the total digestible nutrient of WCRS using the NRC (2001) model. In vitro rumen fermentation, T4, T5, and T6 treatments showed a greater gas emission and total VFA concentration compared with other treatments (p<0.05). Acetate and acetate to propionate ratio of T4, T5, and T6 were significantly higher than other treatments (p<0.05). There was a significant difference in the level of propionate and butyrate according to the WCRS: concentrate ratio (p<0.05). The digestibility of dry matter and CP was significantly lower in W40 than in other treatments (p<0.05); however, there was no difference in W20 and W10. In conclusion, the 20:80 (WCRS: concentrate) is beneficial for stabilizing the rumen that does not inhibit rumen fermentation and nutrient digestion. This ratio might have a positive effect on the economics of farms as a valuable feed.
This study was carried out to find out the changes in the growth characteristics and feed value of the three different whole-crop silage rice cultivars of whole-crop silage rice such as Jonong, Yeongwoo and Mogwoo to develop an efficient double cropping system. This study showed that there were significant differences biomass and feed values among cultivars but no clear difference among transplanting dates. Dry weight and height were in order of Mogwoo, Yeongwoo, Jonong (p<0.05). Dry weight and feed value of Jonong showed no significant difference after 21 days after heading (DAH), it was expected to be harvested before DAH 30 days. Yeongwoo showed a lower dry weight than Mogwoo, but heading date was earlier than Mogwoo, so one can expect a higher feed value than Mogwoo. Mogwoo had lower crude protein and total digestible nutrient than the other two cultivars but relative feed value in stem was higher than that of the other cultivars, but had higher dry weight than other cultivars so it was considered to take an advantage as a silage rice. Therefore, the results of this study suggest that the selection of whole-crop silage rice on the cropping system be made comprehensively by considering the heading characteristics of the cultivars and the feed value.
본 연구는 이형발효 유산균을 첨가한 이탈리안 라이그라스 및 총체보리 사일리지의 저장 기간 동안의 변화에 따른 반추위 발효 효과를 규명하고자 수행하였다. 사일리지의 접종 균주는 이형발효 유산균으로 Lactobacillus casei KACC 12413 및 Lactobacillus reuteri KCTC 3594 및 Lactobacillus casei + Lactobacillus reuteri로 하였다. In vitro 실험의 pH 변화는 LCR 처리구가 높은 경향이었으며, 작물 간의 차이는 WCB사일리지 보다 IRG 사일리지의 pH가 높았다. 총 가스 생산량은 대조구에 비해 유산균 첨가구가 낮았고, WCB 보다 IRG 사일리지가 높은 수준이었다. 암모니아태 질소 농도는 유산균 첨가구 보다 대조구가 높은 경향이었고, 30일 보다 60일 사일리지가 낮았다. 총 휘발성지방산 생성량은 30일 및 60일 WCB 사일리지의 LC 처리구가 높았다. In situ 실험에서 건물 소화율은 48시간 발효 했을 때 LCR 처리구가 높았고 대조구가 가장 낮았다. 작물 간에 차이는 WCB에 비해 IRG가 8∼10% 더 높았다. NDF 소화율은 LC 처리구 및 LCR 처리구가 높은 경향이었고(p<0.05), ADF 소화율은 LC 처리구 및 LCR처리구가 높았다. 본 연구의 결과로 미루어 보아 propionate를 생성하는 이형 발효 유산균이 접종된 사일리지는 반추위 내 발효조건을 개선하고 가축의 사일리지 소화율을 증진 시킬 것으로 보이며, 가축의 생산성 및 사료가치가 향상 될 것으로 여겨진다.
The objective of this study was to evaluate the accuracy of equation being used to estimate the total digestible nutrients (TDN) of whole crop rice silage (WCRS) in sheep. To compare the observed and estimated TDN contents [estimated TDN content=87.57-(0.737×ADF)], two varieties of WCRS from Nokyang (NS) and Samgwang (SS) as forage and food source, respectively, were used as a treatment. Nine female Corriedale sheep (average body weight: 49.2±6.3 kg) were used as the experimental animals. The ewes were fed according to their nutrient requirements at the maintenance level. To check the difference between the observed and estimated TDN contents, one sample non-parametric t-test was applied. The CP, NFE and CF contents of the NS were 43.6, 74.2 and 64.2%, respectively, and that of the SS were 46.2, 58.1 and 44.9%, respectively. The observed and estimated TDN contents of the NS were 63.5 and 61.5%, where there was no significant difference. The observed and estimated TDN contents of the SS were 48.9 and 59.0%, where there was significant difference (p<0.05) This research confirmed the validity of TDN estimation equation being used for estimation of TDN of WCRS as forage source, but further research is recommended on the equation for estimating TDN contents of WCRS as food source.
This study was conducted to investigate the feed value and silage quality according to storage period and film layers in whole crop oat silage. The crude protein content was increased in all silage during the storage periods compared to those before silage, under prolonged storage period slightly and the number of film layers of silage, six layer were higher than four layers, but no significant. NDF and ADF contents were also increased in all silage of storage duration compared to those before silage, but they was similar level between storage duration and number of film layers. TDN content was decreased of the storage duration. However, it was similar under the storage duration and the number of film layers. The pH value was decreased during prolonged storage period and six layers was lower than four layers depending on the film layers. In the organic acid contents, lactic acid and acetic acid were increased under the prolonged storage duration, and butyric acid was higher significantly(p<0.05), six layers of the film were showed higher lactic acid and lower butyric acid(p<0.05). Therefore, oat silage should be used within 6 months it was when treated with 4 layers, if considering the long-term storage, it is desirable to treat it with 6 layers or more.
This study was carried out to investigate the optimal harvesting time, feed value and fermentation quality of barley and wheat for the making of chopped whole crop silage substitute for formula feed. As a result, the moisture content of barley and wheat decreased with a late harvest, and barley progressed faster than wheat. The plant height was similar with harvesting time, and the number of spikes decreased with prolonged period after heading. The dry matter yield and TDN yield of barley harvested at 35 and 40 days after heading were significantly higher than those at 30 days after heading and wheat was significantly higher at 40 and 45 days than at 35 day after heading(P<0.05). Crude protein content of barley and wheat were increased with later harvesting time, and crude fiber, crude fat and crude ash were slightly decreased, but not statistically significant. NDF and ADF content of barley decreased with later harvesting time, and those showed similar level in wheat. TDN content of barely was slightly increased but there was no difference in wheat. Comparing the effects of fermentation on feed value of chopped whole crop silage, the approximate compositions were slightly increased after fermentation, but the difference was not significant. Fermentations resulted in increasing the pH value of barley silage with late harvesting time, but decreasing the lactic acid content(p<0.05). A pH value of wheat silage showed similar level in different harvest time, and lactic acid content was decreased. Considering the quantity and quality of fermentation, barley and wheat can be used for making chopped silage of whole crop silage when they were harvested at 35 days and 40~45 days after heading, respectively.
This study was conducted to evaluate the possibility of expanding the usage of whole crop silage from beef cattle and dairy cow to hogs and chickens. For this purpose, a crushing device was developed to crush whole crop silage. The crushed silage was sealed, and analyzed for its feed value. The silage varieties used for the experiment included Saessal barley and Geumgang wheat. Whole crop barley and wheat were crushed in the crushing system as a whole without separating stems, leaves, grains, etc.. When the crushed whole crop silages (CWCS) were analyzed, full grain, grains above 10 mm in size, grains 5~10 mm in size, and grains below 5 mm in size accounted for, 20%, 4%, 27%, and 49 %, respectively. In order to facilitate the fermentation of CWCS, inoculated some fermenter into each CWCS sample (barley or wheat). As control, another set of sample was not inoculated. Crude protein (CP), ether extract (EE), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, cellulose content, total digestible nutrient (TDN), and relative feed value (RFV) of fermenter-inoculated Saessal barley were 2.45 %, 1.61%, 8.95%, 16.94%, 9.52%, 1.01%, 8.51%, 81.38%, and 447.5%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV in the other sample of Saessal barley without inoculation of fermenter were 2.57%, 1.62%, 9.61%, 18.25%, 10.13%, 1.10%, 9.04%, 80.90%, and 412.9%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV of fermenter-inoculated Geumgang wheat sample were 2.43%, 1.27%, 10.99%, 19.49%, 11.23%, 1.46%, 9.77%, 80.03%, and 382.6%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, RFV of the other set sample of Geumgang wheat sample without the inoculation of fermenter were 2.28%, 1.44%, 10.08%, 18.02%, 10.44%, 1.26%, 9.18%, 80.65%, and 416.9%, respectively. The TDN and RFV content in the fermenter-inoculated Saessal barley were 81.38% and 447.5%, respectively, while the one in the fermenter-inoculated Geumgang wheat were 80.03% and 382.6% respectively. When the feed value of whole crop barley and wheat silage without crushing process was compared to the feed value of whole crop barley and wheat silage made from crushing system, the latter appeared to be higher than the former. This could be due to the process of sealing the crushed silage which might have minimized air content between samples and shortened the golden period of fermentation. In conclusion, these results indicate that a crushing process might be needed to facilitate fermentation and improve the quality of silage when making whole crop silage.
An experiment was carried out to determine the homofermentative activity of Lactobacillus plantarum KCC-10 and KCC-19 on the ensiling of whole crop barley (WCB). The crude protein in the silages was slightly higher in the KCC-10 and KCC-19 treatments compared to the control, but there was no significant difference between the two inoculant-treated silages. Nutrient parameters such as acid detergent fiber, neutral detergent fiber and in vitro dry matter digestibility in L. plantarum KCC-10 and KCC-19 treated silages did not differ from those in the control silage. The lactic acid content increased in KCC-10 and KCC-19 treated silage when compared with the control silage but the contents of acetic acid and butyric acid produced in KCC-10 and KCC-19 treated silages were similar with the control silage. Further, the number of lactic acid bacteria (LAB) in KCC-10 treated silage demonstrated a significant increase when compared to the control. Especially, KCC-19 treated silage showed greater lactic acid bacterial growth potential. Other microbes such as yeast and fungi were not detected in KCC-10 and KCC-19 treated WCB silages. Hence, this study suggests that the addition of L. Plantarum KCC-10 and KCC-19 to the WCB silage can improve fermentation quality for the production of high-quality silage.
The in vitro experiment was conducted to ensure the supplemental level of spent Flammulina velutipes mushroomsubstrates (SMS) as an energy source in manufacturing of whole crop sorghum silage. Sorghum harvested at heading stage wasensiled with spent mushroom substrates of 20% (S-20), 40% (S-40) and 60% (S-60) as fresh matter basis for 6 week. Theexperiment was conducted by 3, 6, 9, 12, 24, 48 hrs of incubation time with 3 replications. The silages were evaluatedfermentation characteristics and dry matter digestibility (DMD) in vitro. The pH of in vitro solution was inclined to decrease withelapsing the incubation time, and that of the S-20 was significantly (P<0.05) lower than the other treatment at 48 hr ofincubation. Gas production was greater (P<0.05) in the S-20 than the other treatments at 6 and 12 hrs of incubation. Themicrobial growth in vitro was inclined to decrease following 24 hr of incubation, and thereafter sustained the similar levels. Invitro dry matter digestibility (IVDMD) was lowered by increasing the supplemental level of spent mushroom substrate, and was alow level in the S-60 throughout whole incubation time. Althoughthe IVDMD for S-40 was steadily increased from 9 hr ofincubation and reached to similar level with the S-20 at 48 hourof incubation, however SMS for whole crop sorghum silagefermentation might as well add about 20 to 30% in fresh matterbasis when considering DMD.
The objective of the study was to investigate the effect of addition of chlorella (CA) on the change of nutritive values, organic acids and microbes on mixture of whole crop barley and crimson clover (WCB-CC) silage. This study was conducted at the experimental field of National Institute of Animal Science, Cheonan, Korea and consisted of three groups, such as control without CA, with 0.25% CA and with 0.5% CA. The contents of crude protein, total digestible nutrient, and in vitro dry matter digestibility of WCB-CC silage were increased by CA treatment (p<0.05). However, acid detergent fiber and neutral detergent fiber of WCB-CC silage were low compared to control (p<0.05). The pH of WCB-CC silage in CA treatment showed no significant difference, but the content of lactic acid and the number of lactic acid bacteria in CA treatment significantly increased as compared to control (p<0.05). These results suggest that the addition of CA could improve the quality of WCB-CC silage
이 연구는 비닐겹수 및 저장기간 따른 청보리 사일리지 의 사료가치 및 사일리지 품질특성을 구명하고자 수행하였 다. 조단백질 함량은 저장기간 모두 사일리지 제조 전에 비해 높아지는 경향을 보였고, 저장기간이 길어질수록 약 간 높은 값을 보였지만 통계적인 유의성은 없었다. 비닐겹 수에 따라서는 6겹 처리한 처리구가 4겹보다 높은 경향이 었다. NDF와 ADF 함량은 저장기간 모두 사일리지 제조 전보다 높은 경향을 보였고(p<0.05), 저장기간에 따라서는 비슷한 값을 나타냈다. 비닐 겹수에 따라서는 6겹 처리한 처리구가 4겹보다 더 높은 값을 나타냈다. TDN 함량은 저 장기간 모두 사일리지 제조 전보다 낮은 경향을 보였고, 저장기간에 따라서는 비슷한 값을 보였다. 비닐겹수에 따 라서는 6겹에서 다소 낮은 값을 보였다. pH는 저장기간이 길어짐에 따라 낮아지는 경향을 보였고, 비닐겹수에 따라 서는 6겹에서 4겹보다 낮은 값을 보였다. 유기산 함량에서 는 저장기간이 길어짐에 따라 젖산함량은 약간 증가하는 경향을 보였고, 초산함량은 낮아지는 경향을 보였으며 낙 산함량은 유의적으로 증가하는 경향을 보였다(p<0.05). 비 닐겹수에 따라서는 6겹에서 4겹보다 높은 젖산함량과 낮은 낙산함량을 보였다(p<0.05). 따라서 청보리 사일리지는 장 기저장을 할 경우에는 6겹으로 하는 것이 유리하고, 4겹으 로 처리했을 경우 6개월 안에 사용하는 것이 유리하다고 판단된다.