Neptunium (Np) is one of the daughter elements included in the decay chain of Pu. The quantitative analysis of Np isotopes is required for radioactive waste characterization, research on actinide chemistry, etc. Np-237 has a long half-life (2.144 million years), but its daughter Pa-233 has a relatively short half-life (26.975 days). For this reason, after a sufficient time elapses following the chemical preparation process of the analyte, the two nuclides are in radiation equilibrium in the sample. Np-237 emits alpha-rays while Pa-233 emits beta-rays. Both nuclides also emit gamma- and X-rays. In this study, alpha-rays were measured using liquid scintillation counting (LSC) method and alpha spectrometry. Gamma-spectrometry with a HPGe detector was used for the analysis of gammaand X-rays. In addition, we compared the radiometric results with quantitative analysis of Np using UV-Vis absorption spectrometry. The LSC method and the HPGe gamma-spectroscopy do not require extensive sample preparation procedures. Alpha spectroscopy requires a standard material spiking, separation by coprecipitation, and disk-type sample preparation procedure to obtain measurement efficiency and recovery factor. A reference material sample with a concentration of 5.8 mM was analyzed by the four analysis methods, and all of the measured results agreed well within a difference level of 4%.
PURPOSES: This paper presents a mix design method for using steel slag as an aggregate for asphalt mixtures.
METHODS: Steel slag has a different density and absorption rate than natural aggregates. The asphalt content was calculated according to the steel slag characteristics, and the formula for aggregate-gradation correction was presented.
RESULTS: The asphalt mix was designed using the proposed equations. Using the proposed mix design method, it was possible to design the asphalt mixture according to the target-usage amount of the recycled aggregate.
CONCLUSIONS: The suggested method can be used for asphalt mix design using aggregates with different densities and absorption rates. It is expected to contribute to quality improvement by ensuring accurate calculation of mixing ratios for steel slag asphalt mixtures.
본 연구에서는 소비자의 새로운 색상에 대한 다양한 욕구를 충족시키기 위하여 백색 장미 데니스(R. hybrida'Denice')를 사용하여 무지개 색상의 장미를 만들고자 하였다. 온도가 높을수록 염색 시간은 빨랐으나 높은 온도에서는 절화의 개화가 빠르게 진행되었으며, 4시간 이상에서는꽃잎의 끝이 너무 진하게 염색되거나 건조되는 현상이나타났다. 7.5g·L-1보다 11g·L-1이상의 염료농도에서 염색되는 속도가 빨랐으나 큰 차이는 없었다.개화정도는 완전봉오리에서 시각적으로는 빨리 염색이되는 것으로 보였으나 속 꽃잎까지 흡수되는 시간은 3처리모두 유사하였다. 그러나 상품가치 면에서는 바깥꽃잎이3~4장 정도 개화했을 때가 가장 적합하다고 판단되었다.단색 실험의 결과에서 가장 적합한 조건 즉, 20℃염료 용액에 3시간 침지, 화경장 30cm, 11g·L-1의 염료 농도, 바깥꽃잎이 3~4장 개화한 ‘Denice’ 장미에 Hot Pink, True Blue,Yellow 3가지 색상을 조합하여 염료를 물올림 한 결과,6가지 색상을 지닌 무지개색의 장미를 착색, 발현시킬 수있었다.
The methods for determining the diffusion parameters for the diffusion of d-limonene, a major volatile compound of orange juice, through a multi-layered food packaging material and predicting its absorption into the packaging material have been investigated. The packaging material used was the 1.5-mm thick multi-layered packaging material composed of high impact polystyrene (HIPS), polyvinylidene chloride (PVDC), and low density polyethylene (LDPE). Orange juice was placed in a cell where volatiles were absorbed in the sample package and kept at 23±2oC for 72 hr. The d-limonene absorbed in a 1.5-mm thick multi-layered food packaging material was analyzed by a solid phase micro-extraction (SPME). The absorption parameters for the absorption of d-limonene in the packaging material were determined and absorption of d-limonene into the packaging material was predicted using absorption storage data. The SPME desorption at 60oC for 1 hr resulted in the most sensitive and reproducible results. The diffusion coefficients of d-limonene in the packaging material and the partition coefficient at 23±2oC were approximately 1-2×10-12m2/s and 0.03, respectively. The absorption profile no earlier than 30 hr was fit well by a model derived from the Fick’s law.
Y-type barium ferrite ( Me=Zn, Co, Cu) expected as an electromagnetic wave absorber were prepared by the glass-ceramic method. The glasses with composition of were prepared. Single-phase powders of Y type barium ferrite were obtained with the composition . The shape of Y-type crystals depended strongly on the heating temperature and changed from a plate-like hexagon to a complex polyhedron with increasing heating temperature. Correlation was recognized between saturation magnetization and crystal shape. Electromagnetic wave absorption characteristics was affected by the saturation magnetization and crystal shape.
Al0.24Ga0.76As/GaAs 다중 양자우물 구조의 고아 흡수 특성을 표면 광전압 방법을 사용하여 연구하였다. SPV 측정결과 1.42eV 부근에서 두 개의 신호가 나탔으며, 이는 화학적 에칭으로 GaAs 기판의 신호와 GaAs 완충층과 관련된 신호임을 확인 할 수 있었다. Al0.24Ga0.76As와 관련된 전이 에너지를 관찰하고, Kuech 등이 제안한 조성식을 이용하여 Al 조성(x=24%)을 결정하였다. 그리고 다중 양자우물에서 나타나는 전이 에너지 값들은 envelope-weve function approximation(EFA)로 계산한 이론치와 잘 일치하였다. 입사광의 세기에 따라 광 전압이 선형적으로 변한다는 것을 알 수 있었고, 온도가 감소함에 따른 전이 에너지의 변화를 관찰하였다.
To prevent climate change which is thought to be caused by the carbon dioxide emitted from industrial facilities by human activities, the efforts to reduce the concentrations of carbon dioxide in the atmosphere have been widely made. One of the method is to capture carbon dioxide by liquid absorbent. In this method, flue gas containing carbon dioxide is introduced to the absorber where the absorbent captures carbon dioxide selectively. After capturing, carbon dioxide is separated by heat at desorber and separated CO2 is transprted to storage site such as deep ocean or underground. However, stored CO2 is not permanently stable and these can be problematic that can cause ecosystem destruction due to low pH of the gas. By applying metal cation supplying unit after the capture process, carbon dioxide can be converted to metal carbonate salt in solid phase which can be stored stably or can be utilized or reused for industrial application. In this research, the mechanisms of carbon dioxide conversion were suggested and basic properties and conditions of the system were introduced.
진단방사선 분야에서는 진단 최적화를 위하여 자동노출제어장치의 활용이 국제적으로 권고되고 있다. 하지만, 기존의 상용화된 광도전체 센서는 제작 공정의 복잡하고 장시간 방사선에 노출될 경우 다양한 성능 저하가 발생하는 문제점이 있다. 이에 본 연구에서는 X-ray 흡수율이 높으면서도 제작이 용이한 장점을 가진 광도전체 기반 센서의 AEC 적용 가능성을 평가하고자 한다. 실험결과, SNR 증가를 통하여 우수한 검출 효율을 가지는 센서의 제작가능성을 확인하였고, 정확한 턴-오프가 가능할 것으로 사료된다. 또한 잠상 영상 및 투과율 실험 결과, 광도전체에 의한 Ghost effect가 나타나지 않음을 확인하였으며, PbO를 제외한 광도전체의 경우 80% - 90%의 우수한 투과율을 확인하였다. 그러므로 상용화된 기존 상품에 대비하여 도핑농도 변화에 따른 성능 저하 및 기계적 안정성이 뛰어나며 제작이 용이한 광도전체 기반의 센서는 AEC 센서로 적용이 가능할 것으로 기대된다.
The main purpose of this study is to provide fundamental data in reducing thermal cracks of mass concrete by using Urea. Substitution methods of Urea mixed concrete was different from existing substitution method of concrete. Therefore existing research for Urea mixed concrete had no definite criterion in performance evaluation. In this research, setting-up new criteria, Urea/Water ratio, when evaluating experiment results. As result of experiment, Cement Paste flow was increased largely when mixed in addition method. But there were almost no differences in degree of temperature reduction and time-delay.
This is a development of testing method of pressurized absorption for prediction and evaluation on the pumpability about lightweight aggregate concrete. For this testing method, we device pressure vessel, plug, and process of experiment. As the results of experiment with hollow sphere, we found a equation on the load-displacement.