검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 107

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aimed to derive the factors that contribute to crash severity in mixed traffic situations and suggest policy implications for enhancing traffic safety related to these contributing factors. METHODS : California autonomous vehicle (AV) accident reports and Google Maps based on accident location were used to identify potential accident severity-contributing factors. A decision tree analysis was adopted to derive the crash severity analyses. The 24 candidate variables that affected crash severity were used as the decision tree input variables, with the output being the crash severity categorized as high, medium, and low. RESULTS : The crash severity contributing factor results showed that the number of lanes, speed limit, bus stop, AV traveling straight, AV turning left, rightmost dedicated lane, and nighttime conditions are variables that affect crash severity. In particular, the speed limit was found to be a factor that caused serious crashes, suggesting that the AV driving speed is closely related to crash severity. Therefore, a speed management strategy for mixed traffic situations is proposed to decrease crash severity and enhance traffic safety. CONCLUSIONS : This paper presents policy implications for reducing accidents caused by autonomous and manual vehicle interactions in terms of engineering, education, enforcement, and governance. The findings of this study are expected to serve as a basis for preparing preventive measures against AV-related accidents.
        4,000원
        2.
        2024.10 구독 인증기관·개인회원 무료
        산업화와 도시화의 급속한 발전으로 교통량이 증가하면서, 도로 비산먼지와 같은 대기 오염 문제가 심각해지고 있다. 특히, 도로에 서 발생하는 미세먼지의 주요 원인인 비배기가스의 일환인 도로 비산먼지(Road suspended dust)는 대기 질을 저하시킬 뿐만 아니라, 인 체 건강에도 여러 가지 해로운 영향을 미친다. 이에 비산먼지 예측 모형식을 개발하기 위해 도심부 도로 내 비산먼지 측정차량을 운 영하고 있으나, 측정 시 주변 환경에 영향을 많이 미치기 때문에 보다 신뢰성 있는 결과를 위해서는 앞차에서 발생하는 배기가스 영 향권을 최소화하여 노면-타이어에서 발생하는 순수 비산먼지 농도를 측정할 필요가 있다. 따라서 본 연구의 목적은 차량의 주행 패턴 에 따라 도로 비산먼지 농도가 어떻게 변화하는지를 분석하고, 거리별 배기가스의 영향력을 평가하고자 하였다. 먼저, 이동식 비산먼지 측정차량을 활용하여 측정차량을 기준으로 차량 간의 거리(10m, 20m, 50m)와 도심부에서 발생할 수 있는 대표 적인 주행행태(전방 2대 직진, 전방 2대 평행, 전방 3대 직진)에 따른 도로 비산먼지 농도의 변화를 측정하였다. 실험 결과, 차량 간 거리가 가까운 10m일 때 비산먼지 농도가 가장 높았으며, 이 때의 농도는 20m 또는 50m 거리에서 측정된 농도보다 유의미하게 증가 하는 경향을 보였다. 특히, 20m 거리에서는 비산먼지 농도가 낮아지는 경향이 뚜렷하였으며, 이는 차량의 배기가스가 도로에서 발생하 는 비산먼지에 미치는 영향이 줄어드는 것을 나타낸다. 또한 전방에 3대의 차량이 직진으로 주행할 경우 앞차량에 의해 비산된 먼지 가 계속 공기중으로 비산되어 측정차량에서는 낮게 나타나는 것으로 분석되었다. 이러한 결과는 도시 내에서 비산먼지에 기반한 안전 거리를 설정하는 데 중요한 기초 자료로 활용될 수 있으며, 측정차량 운영 시 앞차에서 발생하는 배기가스의 영향을 최소화하여 비산 먼지 농도만을 측정할 수 있는 자료로 활용될 수 있다. 본 연구는 배기가스가 도로 비산먼지 농도에 미치는 영향을 실증적으로 분석함으로써, 대기질 개선을 위한 보다 효과적인 정책 수립 에 기여할 것으로 기대된다. 궁극적으로, 도심부 도로 내 도로 비산먼지에 대한 영향을 고려할 때 배기가스에 따른 농도 변화를 이해 함으로써, 향후 도시 환경에서의 지속 가능한 교통 관리와 대기질 개선 전략을 개발하는 데 중요한 기초 자료가 될 것으로 판단된다.
        4.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, due to the expansion of data communication between objects, research related to data communication technology applied to vehicles is being actively conducted. This study selects a network with Wi-Fi 6, which is advantageous in bandwidth, communication speed, and wireless saturation of a wireless network for mobile terminal data communication, and designs and implements Wi-Fi 6 in a vehicle network. In addition, a continuous variable communication structure is proposed to enable high speed data switching in consideration of the characteristics of mobile communication terminal devics, indicating that connection operation and response speed are improved compared to Wi-Fi standard communication methods, and it can be extended to a system for road networks and autonomous driving by expanding it to various event data communication between vehicles.
        4,000원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to identify the causes and expected problems of traffic flow in connection with ground roads that are expected to become stagnant owing to the increase in underground road infrastructure, and to derive methods to solve the problem in the future. METHODS : The basic design of underground roads is similar to that of tunnels. However, there is a point where the slope is large as the entering and exiting sections move underground. The ability of a heavy vehicle to assume a mound may vary depending on the slope. Therefore, in this study, a connection path section with a long slope was constructed using VISSIM, a simulation program, and it was verified whether analysis related to the slope and heavy vehicles in an underground road can be performed in the simulation. Subsequently, an analysis was conducted by setting a scenario and an effect index. In particular, this study analyzes internal delay patterns in the event of an unexpected situation on an underground connection road by performing shock wave analysis to analyze speed reduction according to heavy vehicles and slopes. RESULTS : A correlation between the slope of the underground road and decrease in the average speed according to the increasing rate of heavy vehicles was established. It was also possible to analyze the maximum length and duration of the delay connected to the rear in the event of a delay in the underground road and the shock wave speed transmitted to the rear. The analysis showed that the rate of increase in problems owing to delays ranged from 5% to 20% for the ratio of heavy vehicles. In particular, all effect scales increased significantly at a 9% slope. CONCLUSIONS : This study analyzes the causes of land congestion (slope and heavy vehicle mixing rate), which can be a major problem in underground roads in the future. In the future, by establishing lane-specific speed control strategies and lane control strategies based on this study, it will be necessary to derive solutions such as introducing traffic safety on the underground road by minimizing the shock wave delivered to the rear by providing information on traffic communication conditions inside the underground road to individual vehicles.
        4,300원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to perform a quantitative analysis of Forward Collision Warning and crash frequency using heavy vehicle driving data collected in expressway driving environments, and to classify the driving environments where Forward Collision Warnings of heavy vehicles occur for accident-prone areas and analyze their occurrence characteristics. METHODS : A bivariate Gaussian mixture model based on inter-vehicle distance gap and speed-acceleration parameters is used to classify the environment in which Forward Collision Warning occurs for heavy vehicles driving on expressways. For this analysis, Probe Vehicle Data of 80 large trucks collected by C-ITS devices of Korea Expressway Corporation from May to June 2022. Combined with accident information from the past five years, a detailed analysis of the classified driving environments is conducted. RESULTS : The results of the clustering analysis categorizes Forward Collision Warning environments into three groups: Group I (highdensity, high-speed), Group II (high-density, low-speed), and Group III (low-density, high-speed). It reveals a positive correlation between Forward Collision Warning frequency and accident rates at these points, with Group I prevailing. Road characteristics at sites with different accident incidences showed that on-ramps and toll gates had high occurrences of both accidents and warnings. Furthermore, acceleration deviation at high-accident sites was significant across all groups, with variable speed deviations noted for each warning group. CONCLUSIONS : The Forward Collision Warning of heavy vehicles on expressways is classified into three types depending on the driving environment, and the results of these environmental classifications can be used as a basis for building a road environment that reduces the risk of crashes for heavy vehicles.
        4,000원
        7.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to analyze the difference between the theoretically calculated torque values of lead screws used in vehicle seat rails and the required torque values due to various disturbances that occur in actual systems. Lead screws were classified into square and trapezoidal threads and modeled by two lead type. Dynamic analysis models were constructed by applying contact conditions and rotational joints between the lead screw and nut. The validity of the dynamic model was verified by comparing the torque values obtained from rigid body dynamic analysis with the theoretically calculated torque values. Then, the lead screw was modeled as a flexible body to investigate the torque variation required for the lead screw when dynamic loads are considered. This study will help predict the actual torque values of lead screws for seat rails.
        4,000원
        10.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A spiral flow path was applied to solve the problem of the existing straight flow path in the leveling shaft, a key component of the self-levelizer that can maintain the height according to the change in payload in EV, SUV. In this study, flow analysis was performed to check the velocity, pressure drop, and flow direction of oil according to the main operating conditions of the leveling shaft with a spiral flow path. As a result of the study, a leveling shaft with a spiral flow path is likely to improve fluid properties around the orifice and inlet valve under compression conditions, and it is judged to have a development application effect.
        4,000원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, halogen lamps for vehicle exterior lamp systems are being replaced by LEDs (Light Emitting Diode) in consideration of miniaturization, power consumption, life, luminance, and eco-friendliness. Due to regulations on the amount of light required, luminance, light uniformity, and glare prevention, it is required to develop a light guide for controlling a light source of an LED lamp for a vehicle. For the development of the light guides, the development of machining technology that can cut micro patterns of hundreds of micrometers scale into surface roughness of tens of nanometers scale must be preceded. In this study, the effect of variations in cutting conditions on surface roughness was analyzed through experiments. The micro patterns was manufactured by cutting into STAVAX material, and the surface of the micro patterns was super-finished using a ball-shaped PCD (polycrystalline diamond) tool without flutes. In experiments, the cutting conditions of the super-finishing process were varied, and the varied cutting conditions were feed rate, radial depth of cut, and spindle speed
        4,000원
        12.
        2022.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The United States’ Inflation Reduction Act (IRA) introduces new eligibility requirements for existing USD 7,500 tax-credit provided to electric vehicles. The new requirements condition the credit upon North American final assembly and North American-sourced materials and components. As tensions flare between the US and China, these new local content requirements reflect the US’s effort to establish a supply chain for electric vehicles that circumvents China. The blow, however, is felt elsewhere, namely by South Korean auto makers whose electric vehicle models are no longer eligible for the significant tax-credit necessary to compete in the American market. As South Korea considers submitting a complaint to relevant international bodies, this paper dissects the IRA’s relevant provisions and analyzes the applicability of international trade law rules of the WTO and the Korea-US Free Trade Agreement to the new local content requirements of the IRA.
        5,800원
        13.
        2022.11 구독 인증기관·개인회원 무료
        The The purpose of this study is to establish evaluation criteria for the purchase of electric vehicles and to present an evaluation model using quantitative scales for evaluation factors. This study was limited to the study of purchasing factors related to electric vehicles, and the spatial scope was limited to potential buyers in their 20s to 50s living in the Daejeon area. Based on the survey, the factors affecting the purchase factors (energy economics, image, performance, maintenance, price) were examined using the AHP method, and the priorities were analyzed to determine how much influence these factors have on the purchase of electric vehicles. In addition, in order to verify the logical consistency of the survey items, a consistency ratio test (c) was conducted. Through this study, priority considerations for the purchase of electric vehicles were presented, and information on future consumer interest in electric vehicles was conducted. It is judged to be able to provide an opportunity to provide various services for each layer.
        17.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the design of the lower arm, a type of suspension for a 4 wheel drive vehicle, was dealt with through structural analysis. In the case of the existing lower arm, cracks occurred in the neck, so it is necessary to reduce the maximum stress in order to extend the life of the analysis model. Based on this, various design changes were made, and the maximum stress generated was compared through structural analysis of each design change model. For structural analysis, a unit load (1N) was applied in the vertical direction to the lower arm model, and the results were analyzed relative to each other. As a result of analysis through various design changes, case 3, a model in which the stress concentration applied to the lower arm was relieved, showed an increase in strength of about 51% compared to the existing model.
        4,000원
        18.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Experimental analysis has been carried out on double glazed glass of a commercial vehicle to analyze thermal characteristics for various air flow conditions. This double glazed glass has an important effect on the blocking performance of heat transfer with the vehicle's moving speed and ambient thermodynamic conditions. Calculated thermal resistances and heat transmission coefficient through the glass were compared with measured air indoor and outdoor temperatures including the glass surfaces using an experimental apparatus. The thermal resistance through the glass was increased with the indoor air temperature while overall heat transmission coefficient was decreased due to the convective heat transfer effect. As indoor air became warmer, the effect of air flow velocity on the heat transmission coefficient was reduced significantly. It is expected that these results can be used as applicable design data for the development of the double glazed glass system for many commercial vehicles.
        4,000원
        1 2 3 4 5