검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.
        4,000원
        2.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A timber lattice roof, which has around 30m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by stiffness of connection with various asymmetric snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the asymmetric snow load with the lower level stiffness of connection decreased the level of buckling load significantly.
        4,000원
        3.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.
        4,000원
        4.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the dynamic snapping of the 3-free-nodes spatial truss model was studied. A governing equation was derived considering geometric nonlinearity, and a model with various conditions was analyzed using the fourth order Runge-Kutta method. The dynamic buckling phenomenon was observed in consideration of sensitive changes to the force mode and the initial condition. In addition, the critical load level was analyzed. According to the results of the study, the level of critical buckling load elevated when the shape parameter was high. Parallelly, the same result was caused by the damping term. The sensitive asymmetrical changes showed complex orbits in the phase space, and the critical load level was also becoming lowly. In addition, as the value of damping constant was high, the level of critical load also increases. In particular, the larger the damping constant, the faster it converges to the equilibrium point, and the occurrence of snapping was suppressed.
        4,000원
        5.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we present the result of investigations pertaining to the elastic buckling of simply supported columns with various cross-sectional dimensions but the same length and volume. In the investigations the accuracy of the analysis methods is studied and it was found that the result obtained by the successive approximations technique is the most accurate. In addition, the elastic buckling loads of columns with variable cross-section dimensions are obtained by the theoretical and numerical methods. From the results, it was found that the buckling loads obtained by the numerical methods are close to the buckling loads obtained by the successive approximations technique for the practical standpoints. Moreover, the buckling load of column with convexity in its middle is the highest while the buckling load of the tapered column is the lowest as expected.
        4,000원
        6.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A single-layerd steel lattice roof, which has 50m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by local snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the local snow load with geometrical imperfection decreased the level of buckling load significantly.
        4,000원
        7.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When an engine connecting rod is designed, it’s important to consider the buckling strength as well as deformation and durability of the rod. The buckling strength of a rod is mainly affected by the shape and area of shank cross-section and boundary conditions of its small and big ends. Buckling analysis by finite element method was carried out to evaluate the elastic buckling strength of a connecting rod that has non-uniform cross section areas. And the Merchant-Rankine formula was applied to predict the inelastic critical buckling load by considering the plastic buckling strength. Finally, the maximum allowable compressive load, which has 56.57kN, was predicted by considering the 1.7 buckling safety factor. It represents an approximately 40% greater than the maximum firing pressure.
        4,000원
        8.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper investigates the characteristics of unstable behaviour and critical buckling load by joint rigidity of framed large spatial structures which are sensitive to initial conditions. To distinguish the stable from the unstable, a singular point on equilibrium path and a critical buckling level are computed by the eigenvalues and determinants of the tangential stiffness matrix. For the case study, a two-free node example and a folded plate typed long span example with 325 nodes are adopted, and these adopted examples' nonlinear analysis and unstable characteristics are analyzed. The numerical results in the case of the two-free node example indicate that as the influence of snap-through is bigger; that of bifurcation buckling is lower than that of the joint rigidity as the influence of snap-through is lower. Besides, when the rigidity decreases, the critical buckling load ratio increases. These results are similar to those of the folded-typed long span example. When the buckling load ratio is 0.6 or less, the rigidity greatly increases.
        4,000원
        9.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Buckling, a form of failure happened to plated structures, is investigated in this study. The main focus is to investigate the effects of thickness of the plates having through-thickness holes on buckling when the plate is subjected to in-plane compression. Plates having length of 200mm and width of 100mm are chosen to have thickness in range from 0.50mm to 10mm. Two holes of diameters of 20mm are implemented in plates. The finite element procedure using ABAQUS is applied for analyses. Then using the Gerard and Becker equation compressive buckling coefficients, Kc, are calculated and presented to enable engineers to calculate buckling load for the desired plate with holes in specific dimension. In order to generalize the obtained results, verification analysis has been performed by taking plates having different dimensions from the original ones used in this study. The verification showed the capability of buckling coefficients to predict buckling stresses of plates in various dimensions.
        4,000원
        10.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서 해양플랜트 구조물에 주로 사용하고 있는 알루미늄 합금 A6082-T6의 재료특성을 반영한 사각형 판에 대한 패치 로딩의 구조 안정성 문제를 검토하였다. 구조 안정성 문제를 검토 시 네 가지 패치 로딩 형태와 종횡비 효과, 주변지지조건을 적용하여 임계 탄성 좌굴하중을 산출하였다. 고유치 좌굴해석 간 사용한 요소는 4절점 쉘요소 shell181을 적용하였다. 패치 로딩을 받는 판은 균일 축 압축하중과 비교 시 상이한 탄성 좌굴거동이 발생되는 것을 관찰할 수 있었으며 하중형태와 위치, 종횡비 효과 등과 같은 변수에 대해 상당히 영향을 받고 있는 것을 확인할 수 있다. 또한, 종횡비(a/b) 1.0, 하중길이(rb) 200 mm 단순지지 사각형 판에서 패치 로딩 형태에 따른 임계 탄성좌굴하중은 67 %(하중 I), 119 %(하중 II), 76 %(하중 III), 160 %(하중 IV)이 각각 산출되었으며 하중 I과 III은 하중 II와 IV보다 훨씬 더 탄성 좌굴거동에 강한 것으로 판단할 수 있다.
        4,000원
        12.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.
        4,000원
        13.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가섭선 및 애자가 연결되어 있는 복잡한 구조물인 송전철탑의 3차원 모델링을 통하여 동특성을 파악하고, 풍하중에 대한 응답 특성을 정적, 동적 및 좌굴 해석을 가섭선의 절단 유무에 따라 분석하였다. 우선, 고유치해석을 통해, 송전철탑이라는 구조시스템이 일반 건축물과는 달리 극소수의 저차 모드가 구조물의 동적 거동을 좌우하지 않고, 상대적으로 많은 모드들이 동적 거동에 기여한다는 것을 확인하였다. 두 번째로, 정적 해석과 좌굴 해석을 통해, 대상 구조물이 정적인 개념의 풍하중에 대해서 구조적으로 안전하고 좌굴에 대해서도 충분한 안전율을 확보하고 있음을 확인하였다 그러나, 모든 가섭선이 단절되는 극단적인 경우에는 안전율이 상당히 낮아졌으며 이러한 경우에 구조물의 붕괴 및 전도를 방지할 대책에 대한 검토가 필요하다고 사료된다 마지막으로, 풍하중의 시간에 따른 변화를 고려한 동적해석을 통해, 풍하중의 동적 변동성분이 구조물의 응답을 증가시키고 있음을 확인하였다.
        4,000원
        14.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선체를 구성하는 판부재는 일반적으로 면내하중과 횡하중의 조합하중이 작용하게 된다. 면내하중으로서는 주로 전체적인 선체거더의 휨과 비틀림에 의한 압축하중 및 전단하중이 있다. 횡하중은 수압과 화물압력에 의해서 작용하게 된다. 이러한 하중의 요소들은 항상 동시에 작용하는 것은 아니지만 한 개 이상의 하중이 존재하고 상호작용하게 된다. 그러므로, 좀 더 합리적이고 안정적인 선박구조의 설계를 위해서는 이러한 조합하중이 선체판에 작용할 경우에 발생하게 되는 좌굴 및 최종강도거동의 상호관계를 좀 더 자세히 분석할 필요가 있다. 실제로 선체판은 슬래밍과 팬팅과 같은 충격하중을 제외하고는 상대적으로 작은 수압이 작용하게 된다. 본 연구에서는 조합하중을 받는 선체판부재의 거동에 있어서 최종한계상태 설계법에 기반을 둔 탄소성대변형 유한요소해석을 수행하였다. 본 연구에서는 압축하중과 횡하중이 판부재에 작용하였을 경우 횡하중의 크기에 따른 2차좌굴 거동의 영향을 탄소성대변형 유한요소해석(ANSYS)으로 분석하였다.
        4,000원
        15.
        2006.02 구독 인증기관 무료, 개인회원 유료
        This paper describes dynamic characteristics of a power transmission tower consisting of lots of power lines and insulators. A numerical 3D modeling for the static, dynamic and buckling analyses of the power transmission tower is presented considering the case when the power lines are cut. Eigenvalue analysis indicates that the transmission tower shows different behavior comparing to usual structures governed by several low modes. The transmission tower is governed by lots of modes. It is verified that the transmission tower is structurally safe against the static wind and buckling loads. But the structural and buckling safety is not guaranteed when all power lines are cut, which comes to collapse the transmission tower. Further study is in need to overcome such case. Wind dynantic analysis shows that fluctuating wind loads increase the response of the tower.
        4,000원
        16.
        1997.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 랜덤한 축대칭 기하학적 초기결함을 갖는 원통이 축방향 충격하중을 받는 경우의 반경방향 변위가 임계기준치를 최초로 통과하는 확률론적 충격좌굴 파괴시간을 해석할 수 있는 방법을 제시하였다. 랜덤한 기하학적 초기결함의 생성을 위해 초기결함의 평균함수 및 상관함수를 이용하여 확률장을 형성하는 방법을 사용하였다. 본 논문에서 제시된 방법은 실제적인 기하학적 초기결함이 갖는 불확실성을 취급하는데 적절하고 실용적이므로 이를 고려한 원통의 구조안전도해석에 이용할 수 있다.
        4,200원
        18.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        The reinforcement effect of buckling resistance steel damper on member with two-column and beam is evaluated by investigating the relationship of lateral load and displacement.
        19.
        2016.04 서비스 종료(열람 제한)
        The four buckling resistance steel dampers were tested under cyclic lateral load to investigate the relationship of lateral load and displacement. The main variables are the existence of cover plate for preventing from buckling of out-of-plane and thickness of sim plate with 3.2 mm, 4.5 mm and 7.0 mm. The test showed that steel damper with cover plate had the wider area of its hysteresis loop than that of without.
        20.
        2015.02 서비스 종료(열람 제한)
        This study focuses on the effects of load height on the inelastic lateral buckling of doubly stepped I-beams. The effects of having compact and non-compact flanges are also covered by this study. Two sections are analyzed: one having compact flanges and web while the other section has a compact web and non-compact flanges. The loadings are limited to those having an inflection point of zero. Also, the three main locations for the loads analyzed would be at the top of the flange, at the shear and at the bottom flange. The nonlinear analysis is done using the finite element program, ABAQUS. Also, to take into consideration the effect of inelastic buckling, residual stresses and geometric imperfections are applied to the models made. The results of the analysis would then determine if the location of the loads has significant effects on the buckling strength of the stepped beams. Also, the results are compared to the results of previous studies involving the effects of load-height on prismatic beams. The final results are tabulated and conclusions and new design methods are provided.
        1 2