검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2023.11 구독 인증기관·개인회원 무료
        Chelating agents like ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and nitrilotriacetic acid (NTA) find extensive application in the removal of residual substances due to their high stability constants with a wide range of metal ions. They also play a crucial role in nuclear decontamination operations aimed at eliminating metallic radionuclides such as 60Co, 90Sr, and 239Pu. However, improper disposal of chelated radioactive waste can lead to significant increases in radionuclide migration rates from disposal sites. Therefore, it is imperative to comprehend the behavior of chelating agents under varying conditions, including pH, temperature, and metal ion concentrations. In this study, we present the results of a pH-dependent composition analysis of nickel-chelate complexes using UV-Vis spectrophotometry. Nickel (Ni) serves as an ideal metal ion for investigating its interactions with chelating agents due to its solubility over a wide pH range and high stability constants with all three chelating agents mentioned earlier. Initially, UV-Vis spectra of Ni-EDTA, Ni-DTPA, and Ni-NTA complexes were recorded at various pH levels. We assigned absorption maxima and compared our findings with existing literature on each Ni-chelate complex. Furthermore, we examined mixed samples of all three complexes, varying the pH to monitor changes in composition. The results and their implications will be presented in our poster presentation.
        2.
        2023.11 구독 인증기관·개인회원 무료
        As existing nuclear power plants reach the end of their lifespan, 22 nuclear power plants in korea are scheduled to be permanently shut down and decommissioned by 2050. Chelates are used as decontamination agents during nuclear power plant operation and decommissioning, and as a result, decommissioning waste contains chelates. Chelates contained in radioactive waste are complexed with radionuclides and increases their mobility. So, qualitative and quantitative analysis of chelates contained in radioactive waste is necessary. However, the spectroscopic method (UVVis), previously used for chelate analysis in Korea takes too much time for analysis and cannot analyze two or more chemically similar chelates at the same time. Due to these problems, new methods for analyzing chelate must be developed. Overseas, many cases of chelate analysis using advanced analysis equipment have been reported. CEA in France has developed a chelate analysis method for application to radioactive waste using HPLC-MS (J. Chromatogram. A, 1276, 20-25, 2013). In this method, the existing method of measuring EDTA using a complex of Fe and EDTA was improved to measuring a complex of Ni and EDTA. Based on such overseas cases, we would like to develop an analysis method for chelates in radioactive waste. For this purpose, we will verify similar overseas papers and develop pretreatment methods for mixtures of chelates (EDTA, DTPA, NTA) and metals (Fe, Ni, Cu, etc.) in various media. Finally, we will develop a separation analysis technology for multi-component chelates in nuclear decommissioning waste based on LCMS.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Chelate resin is a resin that has an exchange group which can form chelates with various metal ions. It shows higher selectivity for metal ions than ion exchange resin and can selectively remove characteristic metal ions. In an aqueous solution containing metal ions, chelate resin can adsorb specific metal ions, and the separated chelate resin can desorb the adsorbed metal ions by changing temperature or pH, so chelate resin has the advantage of being reusable. Chelate resin has been used industrially as an adsorbent to adsorb and separate heavy metal ions in wastewater, and is also used for the purpose of recovering precious or rare metals contained in industrial wastewater or industrial waste. Against this background, there is a need to develop chelate resins with higher adsorption capacity. Acrylic fiber is defined as a man-made fiber made from a linear synthetic polymer with fiberforming ability consisting of more than 85% acrylonitrile. It is a man-made fiber that is often used as a substitute for wool because it has good thermal insulation properties like wool and is warm and soft to the touch. It is a fiber rich in cyano groups due to its high content of acrylonitrile, and has the advantage of being able to be used as a variety of functional fibers through modification of cyano groups. In this study, the amination reaction of acrylic fiber was performed using diethylenetriamine, and the adsorption characteristics for metal ions were evaluated according to the reaction conversion rate. In order to improve the amination efficiency, 400 kGy was irradiated using a 2.5 MeV electron beam accelerator, and through this, the crosslinking rate of acrylic fiber was able to be improved up to 80%. Water and ethanol were used as cosolvents for the amination reaction in a ratio of 60/40 vol/vol, respectively, and a reaction yield of 178% was obtained after 120 minutes of reaction. Using the chelate resin prepared in this way, the adsorption performance for metal ions was evaluated through Atomic Absorption Spectrometry analysis.
        6.
        2015.05 구독 인증기관·개인회원 무료
        단일막이 가지는 저유량 한계성과 복합막이 가지는 용질 역확산 현상을 완화하기 위한 방법으로 지지층 내 금속 착물이 균일하게 정착된 PSF 고분자 지지층을 제조하였다. 부직포의 두께와 밀도를 조절하였으며 지지층 제조법 최적화 이후 Fe(II)-chelate 착물을 포함하는 정삼투 분리막을 제조하였다. 지지층 제조방법에 있어 고분자의 부직포 함침 속도 조절이 정삼투 분리막 지지층의 구조결정에 가장 중요한 역할을 함을 볼 수 있었다. 고분자의 상 전이 과정에 있어서 금속 착물과 같은 극성물질의 존재가 용매 -비용매 치환 속도에 영향을 주어 지지층 구조 조절을 유도하였으며 그 결과, 용질 역확산이 약 0.07 - 0.11 GMH의 값을 가지는 높은 제거효율의 FO막을 제조할 수 있었다.
        7.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to investigate the effects of Chromium-Methionine (Cr-Met) chelate feeding for different durations on growth and carcass characteristics in the late fattening stage of Holstein steers. Nine Holstein steers were randomly assigned to three dietary treatments (3 head per treatment) including Non Cr-Met chelate feeding (NCM, av. BW of 433.3 kg), Cr-Met chelate feeding for 2 months (2CM, av. BW of 459.6 kg), and Cr-Met chelate feeding for 4 months (4CM, av. BW of 490.0 kg), respectively. The feeding amount of Cr-Met chelate to an animal was limited to 400 ppb/day. Dry matter intake showed no differences among all the treatments (p>0.05). Average daily gain was also higher in the animals fed Cr-Met chelate diets than NCM (p<0.05). Carcass weights were also observed to be higher in Cr-Met chelate feeding treatments, especially in 4CM compared with other treatments (p<0.05). Although no significant differences were observed on back fat thickness and rib eye area(p<0.05), but 4CM showed much higher effects than NCM and 2CM. Marbling score meat color, fat color, texture, and maturity were not affected by treatments (p>0.05). The variations in meat quality were smaller in 4CM compared to other treatments. 4CM showed higher total and net income than other treatments (p<0.05). Therefore, the current study concluded that Cr-Met chelate supplementation for 4 months could increase daily gain, carcass characteristics, and profitability of Holstein steers in the late fattening stage.
        4,000원
        8.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was to invesigate the effect of dietary supplemention of Pozzolan, Chromium-methionine chelate and rhus verniciflua stokes additive feed on growth performance and ultrasound live body characteristics in finishing Hanwoo steer. The animal used in the experiment were a total of 17 heads and weighted 577.09±35.90㎏. The experimental diets were basal hi-lok branded only concentrat and rice straw and 4% Rhus, 0.4% Cramin and 2% Pozzolan, which additice in basal diet. Individually average daily gain was tended to decreased with treated group. Ultrasound back fat thickness and marbling score were not significantly different(p<0.05)between teratment, however Pozzolan additive treat was showed tend to increased. Longissimus muscle area was showed tended to decreased in the Pozzolan treatment.
        4,000원
        10.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Zinc complexes with Bis[2-(o-hydroxyphenyl) benzothiazolato ligands (ZnPBS-0) and Bis[2- (o-hydroxynaphthyl) benzothiazolato ligands (ZnPBS-05) were synthesized, and luminescent properties of these materials were investigated. The emission band found that it strongly depends on the molecular structure of introduced ligand and was tuned from 525 nm to 535 nm by changing the ligand structures. Spreading of the π-conjugation in 2-(o-hydroxyphenyl) group gives rise to a blue shift. On the other hand, spreading of the π-conjugation in benzothiazole groups leads to a red shift. The EL properties also showed good consistency with their differences of ligand structure. Bright-blue EL emission with a maximum luminance of 8300 cd/m2 at 11V was obtained from the organic light - emitting diodes (OLEDs) using ZnPBS-0 as emitting layer. It was also found that the newly synthesized materials were suitable to be used as emitting materials in organic EL device.
        4,000원
        11.
        2019.05 KCI 등재 서비스 종료(열람 제한)
        금속을 함유하고 있는 산업폐자원과 관련한 재활용 기술을 개발하기 위해 다양한 접근이 시도되고 있으며, 그 중에서 유리는 미생물로 분해되지 않기 때문에 매립은 적합하지 않아 폐유리의 재활용에 대한 관심은 증대되고 있다. 따라서 본 논문에서는 폐유리를 잔골재로 사용하고 폐유리의 중금속 용출을 억제하기 위한 킬레이트 수지를 혼입함으로써, 차폐 채움재의 강도, 건조수축, 알칼리-실리카반응, 중금속 용출 등을 평가하여 폐유리를 경제적이며 환경 친화적인 차폐 채움재로서 활용하기 위한 기초자료를 제시하고자 한다. 시험결과, 폐유리를 잔골재로 사용하였을 경우 강도 발현에 효과적이었으며, 킬레이트 수지를 혼입하였을 경우 강도 발현에 영향이 있는 것으로 나타났다. 또한 킬레이트 수지를 혼입하였을 경우 건조수축의 개선에는 효과적이었으나 알칼리-실리카반응에 영향을 미치는 것으로 나타났다. 중금속 용출 시험결과, 한국 KSLP 시험법에서는 중금속 용출 허용 기준치를 모두 만족하였으나, 납의 경우 미국 ANSI 67-2007a의 허용 기준치를 초과하여 이에 대한 추가적인 연구가 진행되어야 할 것으로 판단되었다.
        12.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Biogas has been used to remove water content and hydrogen sulfide (H2S). Removing water requires a low temperature process; thus, our study investigated removing H2S under high pressure and low temperature. Several experiments were conducted to investigate removal of H2S from a biogas stream by optimizing chemical absorption and the chemical reaction with a Fe/EDTA solution. The roles of Fe/EDTA were studied to enhance removal efficiency of H2S due to oxidization by Fe+3/EDTA. The objective of this study was to explore the feasibility of enhancing toxic gas treatment in a biogas facility. A biogas purification strategy affords many advantages. For example, the process can be performed under mild environmental conditions and at low temperature, and it removes H2S selectively. As the Fe-EDTA concentration increased, the H2S conversion rate increased because the Fe-EDTA complex was highly stable. The optimal pH to stabilize the chemical complex during oxidation of H2S was 9.0.
        13.
        2014.11 서비스 종료(열람 제한)
        Several experiments have done to investigate the removal of hydrogen sulfide (H2S) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1M - 1M Fe/EDTA solution. The hydrogen sulfide of biogas was bubbled through an gas-lift column with Fe/EDTA resulting in the formation of sulfur particles. Wide range of optimal operating conditions were tested for both Fe/EDTA solution and the biogas, and the optimal ratio of Fe/EDTA concentration for efficient removal of hydrogen sulfide was found. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by Fe+3/EDTA. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed of with minor potential for further pollution. The process to address over 90% removal efficiency of hydrogen sulfide does offer considerable advantages unrealized.
        14.
        2013.07 KCI 등재 서비스 종료(열람 제한)
        Several experiments have done to investigate the removal of hydrogen sulfide(H2S) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1 M – 1 M Fe/EDTA solution. The hydrogen sulfide of biogas was bubbled through an gas-lift column with Fe/EDTA resulting in the formation of sulfur particles. Wide range of optimal operating conditions were tested for both Fe/EDTA solution and the biogas, and the optimal ratio of Fe/EDTA concentration for efficient removal of hydrogen sulfide was found. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by Fe+3/EDTA. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed of with minor potential for further pollution. The process to address over 90% removal efficiency of hydrogen sulfide does offer considerable advantages unrealized.