겨울과 같은 환경에서 곤충은 생존과 번성을 위해 생리학적, 생화학적 및 행동적 메커니즘을 이용하고 있다. 대부분의 곤충은 생리학적 적응가운데 급속내한성(Rapid cold hardiness, RCH) 유기를 통해 기온이 급격히 낮아 지는 외부 환경에 대해 빠르게 적응하고 저온조건에서 생존율을 높인다. 열대거세미나방의 경우 행동적 메커니 즘을 통해 따뜻한 곳을 찾아 장거리 비행을 하며, 생존에 유리한 환경으로 이동한다. 본 연구에서는 열대거세미나 방의 생리적 월동능력과 RCH 능력에 관해 조사하였다. 그 결과, RCH에 의해 혈중 글리세롤의 농도가 증가와 체내빙결점이 하강하는 것을 확인할 수 있었다. 또한, RCH(-10℃, 1h)에 노출된 2령 유충기를 대상으로 4령과 5령 유충기에 단기저온(5℃, 30min)에 노출 시 글리세롤 생합성에 관여하는 유전자(glycerol kinase 1, 2)의 발현이 RCH에 노출되지 않은 대조구와 비교하여 빠르게 발현되었다. 이는, 열대거세미나방의 유전자 수준에서 저온에 대한 단기기억이 존재하는 것을 제시한다.
The purpose of this study was to analyze microstructural changes and evaluate the mechanical properties of TWIP steel subjected to variations in heat treatment, in order to identify optimal process conditions for enhancing the performance of TWIP steel. For this purpose, a homogenization heat treatment was conducted at 1,200 °C for 2 h, followed by hot rolling at temperature exceeding 1,100 °C and cold rolling. Annealing heat treatment is achieved using a muffle furnace in the range of 600 °C to 1,000 °C. The microstructure characterization was performed with an optical microscope and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness, tensile test, and ECO index (UTS × Elongation). The specimens annealed at 900 °C and 1,000 °C experienced a significant decrease in hardness and strength due to decarburization. Consequently, the decarburization phenomenon is closely related to the heat treatment process and mechanical properties of TWIP steel, and the effect of the microstructure change during annealing heat treatment.
This study is in order to the effect of 1-methlycyclopropene (1-MCP) treatment and film package as modified atmosphere packaging (MAP) on the changes in fruit quality factors of 'Daehong' peaches during cold storage. The concentrations of 1-MCP were treated at 1μL·L-1 and 2μL·L-1, and peaches in film package were stored for 28 days in cold storage at 5±1°C and 85±5% RH. The fruits stored carton box were used as a control of MAP, and 1-MCP free fruits were used as the control of both packages. Rate of fresh weight loss during storage was not significantly different between groups with and without 1-MCP treatment, but was higher in the box package than in the MAP. The control group had a higher incidence of both gases with the 1-MCP treatment group showing statistically significantly low. Carbon dioxide in the package was lowered by about 12% compared to the non-treated group, and the ethylene concentration was maintained at 1μL·L-1, showing a significance low compared to other treated groups. As the storage period elapsed, the firmness of 1-MCP and MAP treated fruits remained significant at 5-9% compared to the control group. Regardless of the packaging method Hunter a* values of exocarp and mesocarp were significantly higher in fruit treated with 1-MCP 1μL·L-1 treatment than in the control group, and anthocyanin was significantly higher in the fruit during the storage period, especially high in MAP. In summary, fruits of MAP group with 1-MCP 1μL·L-1 had rate of lower respiration and ethylene production, and little changes in firmness, Hunter a* values of exo-carp and meso-carp, and anthocyanin, which is considered the most suitable method for preserving postharvest quality of the peach cultivar during the storage.
Codonopsis lanceolata (S. et Z.) Trautv. is mainly cultivated in Korea and China as a medicinal crop. C. lanceolata is difficult to produce plug seedlings in the summer, because C. lanceolata has a low germination rate and is vulnerable to high temperatures. Cold treatment is effective in breaking dormancy of seeds and increasing the germination rate. Shading cultivation can control the solar irradiance received by plants and reduce the damage by high temperatures and strong light. This study was conducted to examine the appropriate cold treatment period for the improving germination of C. lanceolata, and shading level during the summer seedling period. Cold treatment experiments were conducted for 0 (control), 1, 2, 3, and 4 weeks at 4°C before sowing. In the shading experiment, C. lanceolata was grown for 45 days with 0 (non-treatment), 45, 75% shading levels. Cold treatment for one week significantly improved the germination energy. The plant height, leaf area, and fresh and dry weights of C. lanceolata seedlings were significantly increased under the 45% shading level. Total root length, root surface area, and the number of root tips were significantly higher in shading treatment (45 and 75%) than in non-treatment. The C. lanceolata seedling’s compactness and Dickson’s quality index were the highest at 45% shading level. Therefore, these results recommended sowing C. lanceolata after cold treatment for one week at 4°C, and 45% shading level could stably culture C. lanceolata plug seedlings during the high temperature period.
The effects of cold storage temperature and exposure duration on immature stages of spotted-wing drosophila (SWD) Drosophila suzukii (Diptera: Drosophilidae) on ‘Campbell Early’ grapes were examined to establish a phytosanitary control method. The immature stages (eggs, larvae and pupae) of SWD were all dead after a 6-day cold treatment at 1°C and 8-day cold treatment at 1.5 and 2°C. Small-scale tests using pupae, which were the most-cold tolerant stage, confirmed the validity of the selected temperature and exposure durations. Conversely, the 8- and 10-day at 1°C treatments showed 100% mortality, suggesting that these treatments can guarantee quarantine security against infestations of SWD on exported ‘Campbell Early’ grapes.
This study, for the first time, investigated the packaging requirements of in-package dielectric barrier discharge cold plasma treatment (DBD-CPT). The parameters determining packaging requirements include the internal oxygen concentration, headspace volume to sample volume ratio (HSR), direct or indirect treatment, and kind of packaging material. Grape tomato and mixed vegetables, composed of romaine lettuce, red cabbage, carrot with and without the inoculation with Salmonella, were subjected to DBD-CPT at 32.5 kV for 3 min. Increasing the oxygen concentration in the container from 5% to 90% did not influence Salmonella inactivation (p>0.05). Increasing the HSR of air packaging material from 54:1 to 522:1 increased Salmonella inhibition on grape tomato (p<0.05). Higher Salmonella inhibition was found in grape tomatoes in directly treated salads than in indirect-treated salads (p<0.05). The inactivation of indigenous mesophilic aerobic bacteria was exhibited higher when packaged with PE than with PET (p<0.05). Optimal package requirements were determined as HSR of 522:1, direct treatment, and uses of PE as packaging material for the microbial inactivation using in-package cold plasma treatment. DBD-CPT increased the water vapor permeability of all packaging materials (p<0.05), but did not change their tensile properties and transparency (p>0.05). Overall, DBD-CPT was found effective in decontaminating mixed vegetables, prepackaged with commercial packages, without affecting the tensile and optical properties of the packages. Furthermore, the HSR, the electrode-container distance and kind of packaging material were identified as the major packaging requirements affecting the microbial inactivation efficacy of in-packaged cold plasma treatment.