Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 μm) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°–80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.
본 연구에서는 Cellulose Nano-Crystals (CNCs) 수용액을 이용하여 시멘트 페이스트의 강도 향상에 대한 실험을 수행하고 이 연구결과를 토대로 하여 CNC 혼입에 따른 섬유보강 고인성 시멘트 복합체의 강도 특성에 관한 실험을 진행하였다. 먼저, CNC의 최적 배합비를 결정하기 위한 일환으로, 골재를 포함하지 않은 시멘트 페이스트의 강도 특성을 비교하기 위해 CNC 혼입율에 따라 수용액을 제조하였다. CNC 혼입율은 시멘트 대비 0.1, 0.2, 0.4 vol.%를 주요 변수로 하였고, 이에 따른 휨강도는 0.4 vol.%에서 플레인 시험체와 비교시 최대 8 배까지 강도가 증가하는 것을 확인할 수 있었다. 이 연구결과와 기존 연구결과를 토대로 하여, 본 연구에서는 0.4, 0.8 및 1.2 vol.%의 CNC 혼입율을 주요변수로 한 강섬유와 아마섬유를 활용한 섬유보강 고인성 시멘트 복합체 시험체를 제작한 후 역학적 강도 특성을 평가하여 섬유보강 고인성 시멘트 복합체의 구조적 성능을 규명하였다.
ZnO micro/nanocrystals are formed by a vapor transport method. Mixtures of ZnO and TiO powders are used as the source materials. The TiO powder acts as a reducing agent to reduce the ZnO to Zn and plays an important role in the formation of ZnO micro/nanocrystals. The vapor transport process is carried out in air at atmospheric pressure. When the weight ratios of TiO to ZnO in the source material are lower than 1:2, no ZnO micro/nanocrystals are formed. However, when the ratios of TiO to ZnO in the source material are greater than 1:1, the ZnO crystals with one-dimensional wire morphology are formed. In the room temperature cathodoluminescence spectra of all the products, a strong ultraviolet emission centered at 380 nm is observed. As the ratio of TiO to ZnO in the source material increases from 1:2 to 1:1, the intensity ratio of ultraviolet to visible emission increases, suggesting that the crystallinity of the ZnO crystals is improved. Only the ultraviolet emission is observed for the ZnO crystals prepared using the source material with a TiO/ZnO ratio of 2:1.
ZnO crystals with different morphologies are synthesized through thermal evaporation of the mixture of Zn and Cu powder in air at atmospheric pressure. ZnO crystals with wire shape are synthesized when the process is performed at 1,000 oC, while tetrapod-shaped ZnO crystals begin to form at 1,100 oC. The wire-shaped ZnO crystals form even at 1,000 oC, indicating that Cu acts as a reducing agent. As the temperature increases to 1,200 oC, a large quantity of tetrapod-shaped ZnO crystals form and their size also increases. In addition to the tetrapods, rod-shaped ZnO crystals are observed. The atomic ratio of Zn and O in the ZnO crystals is approximately 1:1 with an increasing process temperature from 1,000 oC to 1,200 oC. For the ZnO crystals synthesized at 1,000 oC, no luminescence spectrum is observed. A weak visible luminescence is detected for the ZnO crystals prepared at 1,100 oC. Ultraviolet and visible luminescence peaks with strong intensities are observed in the luminescence spectrum of the ZnO crystals formed at 1,200 oC.
The purpose of this study is to investigate the optimum conditions of dispersion and strength to maximize the mechanical properties of woody cellulose nano–crystal (CNC). As a dispersing method, ultrasonic dispersing machine and magnetic stirrer were used as the mechanical dispersion method. The mixing ratio of cellulose nano-crystals (CNCs) was 0.2% and the dispersion time was 10 minutes. Steam curing was carried out for 6, 24 and 48 hours. Based on the experimental results, we will propose source technology regarding CNC for construction materials.
A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[101], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, 36.3o and 48.7o, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10% compression.
Unidirectionally solidified TiAl alloys were prepared by optically-heated floating zone method at growth rates of 10 to 70 mm/h in flowing argon. The microstructures and tensile properties of these crystal bars were found to depend strongly on the growth rate and alloy composition. TiAl alloys with composition of 47 and 50 at.%Al grown under the condition of 10 mm/h showed Ti3Al(α2)/TiAl(γ) layer structures similar to single crystals. As the growth rate increased, the alloys with 47 and 50 at.%Al compositions showed columnar-grain structures. However, the alloys fabricated under the condition of 10 mm/ h had a layered structure, but the alloy with increased growth rate consisted of γ single phase grains. The alloy with a 53 at.%Al composition showed a γ single phase regardless of the growth rate. Room-temperature tensile tests of these alloys revealed that the columnar-grained material consisting of the layered structure showed a tensile ductility of larger than 4 % and relatively high strength. The high strength is caused by stress concentration at the grain boundaries; this enhances the secondary slip or deformation twinning across the layered structure in the vicinity of the grain boundaries, resulting in the appreciable ductility.
목 적: 화학수송법으로 성장시킨 Ga2Se3 및 Ga2Se3 : Co2+ 단결정의 광학적 에너지 띠 간격 energy band gap의 온도의존성을 규명하고, 이로부터 기초적 열역학 함수를 추정고자 한다.
방 법: gallium(99.9999 %, 2 mol), selenium(99.9999 %, 3 mol), cobalt(99.99 %, 0.1 mol %) 그리고 수송물질로 iodine(99.99 %, 6 mg/cm3)을 함께 석영관에 넣고 내부를 5×10-6 torr로 유지하면서 봉입하여 성장용 ampoule을 만들었다. 성장용 ampoule을 2단 전기로의 중앙에 위치시키고, 결정 성장측의 잔류불순 물을 깨끗이 제거한 후, 시료 출발측을 890 ℃, 성장측을 780 ℃로 6일간 유지하여 단결정을 성장시켰다. 기초 흡수단 부근에서 에너지 띠 간격의 온도의존성을 구하기 위하여 저온장치(Air Products, SH-4)가 부 착된 UV-VIS-NIR spectrophotometer(Hitachi, U-3501)를 사용하여 광흡수 스펙트럼을 측정하였다. 결과 및 고찰: Ga2Se3 및 Ga2Se3 : Co2+ 단결정들의 광흡수 스펙트럼은 순수한 Ga2Se3 단결정의 경우 570 nm영역에서, Ga2Se3 : Co2+ 단결정의 경우 594 nm영역에서 광흡수가 급격히 증가하여 cobalt를 첨가한 단 결정의 기초 흡수단이 장파장 측으로 이동됨을 볼 수 있었다. 또한 에너지 띠 간격의 온도의존성은 Varshni 가 제안한 실험식으로부터 구하였다.
결 론: 성장된 단결정의 구조는 cubic구조이었고, 이들의 격자상수 값은 Ga2Se3 및 Ga2Se3 : Co2+ 단결정 들에 대하여 각각 a = 5.442 Å, a = 5.672 Å이었다. 광흡수 스펙트럼으로부터 구한 optical energy band gap(Eg)의 band구조는 직접 전이형이었고, 에너지 띠 간격의 온도의존성은 Varshni방정식이 잘 적용되었 다. 이때 구한 상수 값은 Ga2Se3 단결정의 경우 Eg(0) = 2.177 eV, α= 7.8×10-4eV/K, β= 378 K로 주어 지고, Ga2Se3 : Co2+단결정의 경우 Eg(0) = 2.089 eV, α= 1.20×10-3 eV/K, β= 349 K로 주어졌다. 이들 값 으로부터 구한 에너지 띠 간격의 온도의존성으로부터 열역학 함수인 entropy(SCV), heat capacity(CCV), enthalpy(HCV) 값을 추정할 수 있었다.
본 논문은 Y3Al5O12:Ce3+(YAG:Ce3+) 단결정과 CaAlSiN3:Eu2+(CASN) 형광체에 관하여 연구하였다. 단결정은 floating zone법을 통해 성장시켰다. XRD 측정결과 JCPDS Card(#73-1370)에 상응하며 공간군 la-3d(230)에 속해있고 Cubic 구조로 된 것을 확인할 수 있었다. 단결정의 PL은 550 nm의 발광피크와 반치폭이 71 nm인 넓은 스펙트럼을 나 타냈고 PLE는 350 nm와 460 nm의 피크값을 나타냈다. CASN 분말의 PL은 604 nm, PLE는 460 nm의 피크값을 나타 냈다. CASN을 YAG:Ce3+ 단결정에 코팅하고 blue LED에 적용 후 측정한 결과, 측정한 PL 스펙트럼에서 CASN의 농도 증가에 따라 red shift 현상이 증가함을 알 수 있다. 연색성 또한 YAG:Ce3+ 단결정에서의 Ra는 67, CASN 10 wt%에서 는 78로 개선되는 것을 확인할 수 있었다.
목 적: Iodine을 수송매체로 사용한 화학수송법으로 성장시킨 CdS, CdS : Co2+ 및 CdS : Er3+단결정의 광학적 특성연구를 하였다.
방 법: CdS, CdS : Co 및 CdS : Er 단결정을 성장시키기 위하여 고순도(99.9999 %)의 cadmium, sulfur 를 mole비로 칭량하고 수송물질로 iodine(순도 99.99%)을 함께 준비된 석영관 안에 넣고, 석영관 내부의 진 공을 5×10-6torr로 유지하면서 봉입하여 성장용 ampoule을 만들었다. 단결정을 성장시키기 위하여 시료 출발 측을 900 ℃, 성장 측을 700 ℃로 하여 7일간 성장시켰다. 성장된 단결정에서 iodine 을 제거하기 위하여 출발 측의 전원을 차단하고 성장 측의 온도를 250℃에서 10 시간동안 유지하여 전원을 끊고 실온까지 서냉하여, CdS, CdS : Co 및 CdS : Er단결정을 성장시켰다. 성장된 단결정의 결정구조는 X-ray diffractometer를 사용하여 X선 회절선을 측정하였고, 광흡수 특성은 UV-VIS-NIR spectrophotometer 로 측정하였다.
결과 및 고찰: XRD로 측정한 X선 회절무늬 peak 해석으로부터 구한 CdS 및 CdS : Co2+(2mole%) 단결정의 결정구조는 defect chalcopyrite 구조이었으며 CdS : Er3+(2mole%) 단결정은 hexagonal 구조였다. 에너지 띠 간격은 직접 전이형 밴드구조를 나타냈다.
결 론: 성장된 CdS 및 CdS : Co2+(2mole%) 단결정의 결정구조는 defect chalcopyrite 구조이었으며, 격자 상수는 CdS 단결정의 경우 a = 4.139Å, c = 6.716Å이였고, 불순물로 cobalt를 첨가한 CdS : Co2+(2mole%) 단결정의 경우 a = 4.141Å, c = 6.720Å이였으며, 또한 erbium을 첨가한 CdS : Er3+(2mole%) 단결정의 구조 는 hexagonal 구조이었으며, 격자상수는 a = 4.135Å, b = 4.135Å, c = 6.706Å이었다. 298K에서 순수한 CdS 단결정의 에너지 띠 간격은 2.422e V이었고, 불순물로 전이금속인 cobalt(2mole%) 첨가할 때 에너지 띠 간격은 2.331e V, 또한 희토류금속인 erbium(2mole%) 첨가한 경우 에너지 띠 간격은 2.230e V 이었다.
Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60°C and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.
ZnO micro/nanocrystals at large scale were synthesized through the thermal evaporation of Al-Zn mixtures under air atmosphere. The effect of synthetic temperature and time on the morphology of the micro/nanocrystals was examined. It was found that the temperature and time affected the morphology of the ZnO crystals. At temperatures below 900 oC, no crystals were synthesized. At a temperature of 1000 oC, ZnO crystals with a rod shape were synthesized. With an increase in temperature from 1000 oC to 1100 oC, the morphology of the crystals changed from rod shape to wire and granular shapes. As the time increased from 2 h to 3 h at 1000 oC, tetrapod-shaped ZnO crystals started to form. XRD patterns showed that the ZnO crystals had a hexagonal wurtzite structure. EDX analysis revealed that the ZnO crystals had high purity. It is believed that the ZnO nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the micro/nanocrystals in the SEM images.
The structural phase transformations of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)→tetragonal (T)→rhombohedral (R) phase was observed in zero-field-cooled conditions; and a C→T→monoclinic (Mc)→ monoclinic (MA) phase was observed in the field-cooled conditions. The transformation of T to MA phase was realized through an intermediate Mc phase. The results also represent conclusive and direct evidence of a Mc to MA phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a R→MA→Mc→T phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the MA phase was stable at room temperature. With increasing the field, the transformation temperature from T to Mc and from Mc to MA phase decreased, and the phase stability ranges of both T and Mc phases increased. Upon removal of the field, the phase transformation from R to MA phase was irreversible, but from MA to Mc was reversible, which means that MA is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.
The growing conditions of barium nitrate Ba(NO3)2 single crystals using the aqueous solution method have been studied. Supersaturation can be calculated by measuring the temperature of the solution and its equilibrium temperature. Supersaturation of Ba(NO3)2 was 0.7% at 32.0˚C and about 3% at 34.0˚C. The obtained single crystals have three kind of morphology: tetrahedral, cubic, and, rarely, dodecahedral. The normal growth rate is proportional to the supersaturation; it is necessary to make the solution below 5% supersaturation in order to obtain transparent Ba(NO3)2 single crystals. The normal growth rate for 1ar11 faces was 2.51×10-6 mm/s for the 0.7% supersaturation condition (32.0˚C), 6.43×10-6 mm/s for the the condition of 3.0% supersaturation, and 7.01×10-6 mm/s for the condition of 5.0% supersaturation. The quality of the grown crystals depends on the nature of the seed, the cooling rate employed, and the agitation of the solution. The faces of the obtained crystals have been identified uising an X-ray diffractometer. The surface diffusion is responsible for the low growth rates of the 1ar11 faces.
Tungsten bronze structure Sr1-xBaxNb2O6 (SBN) single crystals were grown primarily using the Czochralski method, in which several difficulties were encountered: striation formation and diameter control. Striation formation occurred mainly because of crystal rotation in an asymmetric thermal field and unsteady melt convection driven by thermal buoyancy forces. To optimize the growth conditions, bulk SBN crystals were grown in a furnace with resistance heating elements. The zone of O2 atmosphere for crystal growth is 9.0 cm and the difference of temperature between the melt and the top is 70˚C. According to the growth conditions of the rotation rate, grown SBN became either polycrystalline or composed of single crystals. In the case of as-grown Sr1-xBaxNb2O6 (x = 0.4; 60SBN) single crystals, the color of the crystals was transparent yellowish and the growth axis was the c-axis. The facets of the crystals were of various shapes. The length and diameter of the single crystals was 50~70 mm and 5~10 mm, respectively. Tungsten bronze SBN growth is affected by the temperature profile and the atmosphere of the growing zone. The thermal expansion coefficients on heating and on cooling of the grown SBN single crystals were not matched. These coefficients were thought to influence the phase transition phenomena of SBN.
A topology optimization method for phononic crystals is developed for the design of sound barriers, using the level set approach. Given a frequency and an incident wave to the phononic crystals, an optimal shape of periodic inclusions is found by minimizing the norm of transmittance. In a sound field including scattering bodies, an acoustic wave can be refracted on the obstacle boundaries, which enables to control acoustic performance by taking the shape of inclusions as the design variables. In this research, we consider a layered structure which is composed of inclusions arranged periodically in horizontal direction while finite inclusions are distributed in vertical direction. Due to the periodicity of inclusions, a unit cell can be considered to analyze the wave propagation together with proper boundary conditions which are imposed on the left and right edges of the unit cell using the Bloch theorem. The boundary conditions for the lower and the upper boundaries of unit cell are described by impedance matrices, which represent the transmission of waves between the layered structure and the semi-infinite external media. A level set method is employed to describe the topology and the shape of inclusions. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. Through several numerical examples, the applicability of the proposed method is demonstrated.
The dielectric properties and phase transformation of poled <001>-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3(PMN-x%PT) single crystals with compositions of x=20, 30, and 35mole% are investigated for orientations both parallel andperpendicular to the [001] poling direction. An electric-field-induced monoclinic phase was observed for the initial poled PMN-30PT and PMN-35PT samples by means of high-resolution synchrotron x-ray diffraction. The monoclinic phase appears from−25oC to 100oC and from −25oC to 80oC for the PMN-30PT and PMN-35PT samples, respectively. The dielectric constant (ε)-temperature (T) characteristics above the Curie temperature were found to be described by the equation(1/ε−1/εm)1/n=(T−Tm)/C, where εm is the maximum dielectric constant and Tm is the temperature giving εm, and n and C are constants that changewith the composition. The value of n was found to be 1.82 and 1.38 for 20PT and 35PT, respectively. The results of meshscans and the temperature-dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a singledomain tetragonal phase and a to paraelectric cubic phase. In the ferroelectric tetragonal phase with a single domain state, thedielectric constant measured perpendicular to the poling direction was dramatically higher than that measured in the paralleldirection. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believedto be related to dielectric softening close to the morphotropic phase boundary.
The structure and dielectric properties of poled<001>-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-0.3PT) crystals have been investigated for orientations both parallel and perpendicular to the [001] poling direction. An electric field induced monoclinic phase was observed for the initial poled sample. The phase remained stable after the field was removed. A quite different temperature dependence of dielectric constant has been observed between heating and cooling due to an irreversible phase transformation. The results of mesh scans and temperature dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a single domain tetragonal phase at 370K and to a paraelectric cubic phase at 405K upon heating. However, upon subsequent cooling from the unpoled state, the cubic phase changes to a poly domain tetragonal phase and to a rhombohedral phase. In the ferroelectric tetragonal phase with a single domain state, the dielectric constant measured perpendicular to the poling direction was dramatically higher than that of the parallel direction. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believed to be related to dielectric softening close to the morphotropic phase boundary and at the phase transition temperature.