In this study, we investigated the effects of diesel-palm oil biodiesel-ethanol blends on combustion and emission characteristics in a 4-cylinder common rail direct injection (CRDI) diesel engine at low idling operations. The engine speed and engine load was 750 rpm and 40 Nm, while the main and pilot injection timing was respectively fixed at 2 °CA before top dead center (BTDC) and 20 °CA BTDC. The experimental results showed that the cylinder pressure increased with the increasing of palm oil biodiesel ratio from 20% to 100%. In addition, the peak value of cylinder pressure increased by 4.35% compared with pure diesel fuel when 5 vol.% ethanol oil added to diesel oil. Because the palm oil biodiesel and ethanol are the oxygenated fuel, the oxygen content played an important role in improving combustion. Based on the high oxygen content of biodiesel and ethanol, their mixing with diesel fuel effectively reduced PM emissions but increased NOx slightly, while CO and HC had no significant changes.
The wavy fins have been widely used in the heat exchangers in coolering system, aerospace system and automotive. Especially, an automobile has the wavy fin and flat tube heat exchanger for oil cooling system. The objective of this research is the performance comparison of wavy fins for battle vehicle diesel engine oil-cooler by numerical analysis. The real type fin is the wavy fin with corrugated structure, and the comparative fin surfaces are plain, louver, lateral perforation and parallel wavy fin. The non-dimensional values of f-factor, j-factor, area goodness factor and volume goodness factor was performed on the performance comparison. The plain and louver fin shows the highest performance in pressure drop and heat transfer respectively. In the area goodness factor and volume goodness factor results, the parallel wavy fin and louver fin show the highest values at each result.
This study describes the effects of palm oil biodiesel (PD) blended with diesel on the combustion performance, emission characteristics and soot morphology in a 4-cylinder CRDI diesel engine. 5 kinds of fuels are used with blending as diesel/biodiesel volume ratio 0%, 10%, 20%, 30%, 100%. The engine is operated under idle speed, 750rpm and load conditions of the engine are 0 Nm and 40Nm. The Coefficient of Variation(COV) of Indicated Mean Effective Pressure(IMEP) shows that the engine operates very steadily in the idle state. But fuel consumption is increased. And Emission results show that the oxygen in biodiesel has a great influence on the production of exhaust emissions. The nitrogen oxides(NOx) is decreased because of high viscosity and low heating values of biodiesel at low blend ratio. But NOx and Carbon monoxide(CO) are increased above a certain blend ratio. Particulate matter(PM) and Hydrocarbons(HC) is decreased according to increase of blend ratio. The size of soot is decreased and the morphology of soot is developed to cluster with increasing blend ratio.
In recent years, much interest has been devoted to bio-fuels because of their beneficial effects on environment, agriculture and economic development. Raw vegetable oil – a kind of bio-fuels, still exits many downsides, is potential renewable fuel replaced for ever-exhausted fossil fuel. In this report, vegetable oil which is available in the South of Vietnam such as raw coconut oil is studied by heating up different temperature with the aim at decreasing its high viscosity and density and meeting the fuel requirements. The experiments are conducted on heated coconut oil (HCO) and fossil diesel oil (DO) using an 80hp of small marine diesel engine. The results of engine performance as using DO and HCO included engine power (Ne), specific fuel consumption (SFC), thermal efficiency (TE), emission characteristics such as carbon monoxide (CO), unburned hydrocarbon (HC), smoke, nitrogen oxides (NOx) at internal feature are measured. The experiment results show higher SFC, CO, HC and smoke emissions, and lower TE, and NOx emissions for HCO with respect to DO. In addition, this study also reveals that, 1000C of HCO is said to be the most suitable heating temperature as getting the engine performance equals to DO.
선박용 연료유가 연소하는 과정에서 배출되는 오염물질은 대기오염을 유발하고 인체에 유해한 영향을 미치는 것으로 알려져 있다. 그에 따라, IMO에서는 선박에서 배출되는 오염물질을 규제하고 있다. 하지만 입자상물질(Particulate matter: PM)에 대한 규제는 아직 논의단계에 있으므로 선제적인 대응이 필요하다. 그러기 위해서는 입자상물질에 대한 기초적인 연구가 필수적이다. 이번 연구에서는 해상용 연료유에서 발생하는 입자상물질의 기초 데이터 구축을 위해 선박 디젤 엔진에 사용되는 연료유의 무차원 광소멸계수(Ke)를 계측하여 분석하였다. 특성 비교를 위해 육상 디젤 엔진에 사용되는 연료유를 같은 방법으로 측정하였다. 두 연료유는 황함유량과 밀도에서 차이가 난다. 무차원 광소멸계수(Ke)는 633 nm의 레이저를 이용하여 광학적인 방법으로 측정하고 중력식 필터법에 의해 채집된 입자상물질의 체적분율을 이용하여 결정하였다. 선박용 연료유에서 배출되는 입자상물질의 무차원 광소멸계수(Ke)는 8.28이고, 육상용 연료유는 8.44 이다. 두 연료유의 무차원 광소멸계수(Ke)는 측정 불확도 범위내에서 거의 유사하였다. 하지만 Rayleigh limit 해법에서 구한 값과의 비교를 통해 광산란 비중이 클 수 있는 부분과 광투과율과 채집질량과의 관계를 통해 광소멸 특성이 상이할 수 있음을 확인하였다.
전통적인 화석 에너지 자원의 고갈과 환경오염 악화 등의 관점에서 볼 때 에너지 절약 및 배출가스의 저감은 동시에 해결해야 되는 문제로 대두되고 있다. 바이오연료는 대체연료의 하나로서 이러한 문제들을 효과적으로 해소할 수 있는 대안으로 떠오르고 있다. 따라서 본 연구에서는 커먼레일 터보과급디젤기관에서 카놀라유 바이오디젤연료의 적용효과를 알아보기 위하여 실험적으로 고찰하였다. 실험에 사용된 연료는 ULSD(초저황 디젤유), BD20(체적비로 20%인 카놀라유와 80% 디젤유 혼합) 및 PCO(순수한 카놀라유)를 사용하였다. 카놀라유 바이오디젤연료의 혼합율이 증가함에 따라 입자상물질(PM)과 일산화탄소 (CO)는 크게 감소하였으며, 질소산화물(NOx)은 약간 증가하는 현상을 보였다.
This study describes the effects of canola oil biodiesel (BD) blended fuel on the combustion performance and emission characteristics in a 4-cylinder common-rail direct injection diesel engine. In this study, with the increasing of engine loads, the biodiesel blend fuels(100 vol.% ULSD and 0 vol.% biodiesel blend, BD0; 80 vol.% ULSD and 20 vol.% biodiesel blend, BD20; 0 vol.% ULSD and 100 vol.% biodiesel blend, BD100; ULSD: ultra low sulfur diesel) were used at an engine speed of 1,500rpm. The experimental results showed that with the increasing of biodiesel blend rate, the combustion pressure decreased slightly at engine load of 20~60Nm. However, the rate of heat release (ROHR) increased clearly and ignition delay time was shortened. With the increasing of biodiesel blend rate, the carbon monoxide (CO) and particulate matter (PM) emissions were more decreased at all of the engine loads.
A demand for bio-diesel oil increases as one of solution for exhaustion of fossil fuel and reduction of CO2 emission, and research on bio-diesel is being carried out. Bio-diesel oil is mainly esterified from vegetable oil with methanol in order to use for fuel on diesel engine and has demerit that costs are increased as compared with directly using like non-esterified one. Bio-diesel oil within 3% mixed with gas oil is used at present, proportion of bio-diesel oil will be increase by 5% in future. We judged that wasted soybean oil non-esterified could be used on diesel engine with an electronic fuel injection according to previous researches with a mechanical fuel injection. A performance test using only gas oil, gas oil with esterified bio-diesel oil 5% and wasted soybean oil non-esterified 5% on diesel engine with the electronic fuel injection were carried out. It is noticed that gas oil with wasted soybean oil non-esterified 5% has more similar characteristics to gas oil than gas oil with esterified bio-diesel oil 5%.
산유국으로부터 에너지 독립을 하고 대기오염방지를 위한 배기배출물을 저감시키기 위하여 대체연료에 많은 관심을 가지고 있다. 폐유나 새로운 식물성 기름과 동물성 기름으로부터 생성할 수 있는 바이오디젤유가 압축점화기관인 디젤기관에 구조적인 변화없이 사용될 수 있다. 이 논문에서는 4행정 직접분사식 디젤기관을 이용하여 순수 디젤유와 바이오디젤 혼합유(바이오디젤 10% 및 20% 함유)의 연료소비율과 배기배출물에 미치는 영향을 제시했으며, 특히 실험에 사용된 바이오디젤 연료는 우리 실험실에서 유채유로부터 직접 생산되었다. 이 연구 결과 바이오디젤 혼합유가 디젤유 보다 연료소비율과 질소산화물은 약간 증가 되었고 일산화탄소와 매연은 상당히 감소되었다.
This study was conducted on the properties of exhaust emissions of diesel oil and fish oil blended with diesel oils using a direct injection diesel engine at different loads, and on the conditions of carbon deposits of diesel oil and 40% blend oil in the combustion chamber after 20 hours operation at 1]2 load. The properties of exhaust emissions by fish oil blended with diesel oils showed no significant difference with diesel oil. However, soot emissions decreased, increasing the ratio of fish oil. Carbon deposits by fish oil blended with diesel oils were high level compared with diesel oil, which might be overcome by preheating of fuel oil and operating conditions.
The combustion characteristics of diesel oil and fish oil blended with diesel oils were investigated at various blending rate of fish oil in diesel engine and constant volume combustion bomb. The evaporation and combustion duration of diesel oil and fish oil blended with diesel oils were respectively different high and low temperature. The dependence of ignition delay on the temperature was different in high and low temperature ranges which were divided at the 773K. The ignition delay become longer than that of diesel oil as the blending rate of fish oil increases, and its difference were larger at different loads. The densityof smoke was lower as the blending rate of fish oil increases, and the rate offuel consumption showed no significant difference between diesel oil and fish oil blended with diesel oils.
This paper is an experimental study to investigate utility of ultrasonic treatment of fuel oil in diesel engine. Experiment was carrid out to clarify the effect of ultrsonic vibration on the characteristics of maximum pressure, fuel consumption ratio, smoke, BMEP and torque. The result obtained are as follows: 1. In the case of given ultrsonic vibration, the maximum pressure is increased in all experimental conditions. 2. In the case of given ultrsonic vibration, the decrease effect of fuel consumption rate is increased at low rpm. 3. The generation quantity of soots is increased according to load. In the case of given ultrsonic vibration, the decreased quantity of soots does not very according to load. 4. In the case of given ultrsonic vibration, the BMEP and torque are increased at low load.