검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400oC. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.
        4,000원
        3.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An extract of fresh guava leaves (Psidium guajava) was used as a green carbon precursor to fabricate blue fluorescent carbon quantum dots (GCQDs) by hydrothermal process. The GCQDs show bright blue fluorescence emission under UV light with an excitation wavelength of 350 nm and emission at 450 nm. The physical structure of GCQDs was characterized by Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM) and atomic force microscopy (AFM). GCQDs 80 μg inhibited the growth of waterborne pathogens Escherichia coli and Salmonella typhi. We also investigated the catalytic activity of the GCQDs on the removal of two azo dyes, namely Congo red and bromophenol blue, with and without NaBH4. The GCQDs showed an excellent reduction of color intensity of both dyes without NaBH4 within 30 min of treatment.
        4,200원
        4.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes – thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.
        4,000원
        6.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To meet the increased performance and cost requirements of commercial supercapacitor, a N and O self-doped hierarchical porous carbon is fabricated via a green and simple self-activation route utilizing leaves of wild hollyhock as raw materials. Comparing to commercial activated carbon, the reported material exhibits some marked merits, such as simple and green fabrication process, low cost, and superior capacitance performance. The specific surface area of the obtained N and O codoped hierarchical porous carbon arrives 954 m2 g−1, and the content of the self-doped nitrogen and oxygen reaches 2.64 at.% and 7.38 at.%, respectively. The specific capacitance of the obtained material reaches 226 F g− 1 while the specific capacitance of the symmetric supercapacitor arrives 47.3 F g− 1. Meanwhile, more than 90.3% of initial specific capacitance is kept under a current density of 20 A g− 1, and no arresting degradation is observed for capacitance after 5000 times cycle, perfectly demonstrating the excellent cycle and rate capability of the obtained material. The obtained N and O co-doped hierarchical porous carbon are expected to be an ideal substitution for commercial activated carbon.
        4,200원
        7.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        환경오염과 화석연료의 문제로 인한 2차 에너지 변환 및 저장 장치의 개발이 활발하게 진행되고 있다. 이러한 에너지 변환장치들은 전기화학적 시스템을 기본으로 운영되고 있으며 이온교환막은 각 공정의 성능을 결정짓는 중요한 요소이다. 따라서 에너지 시스템의 효율 증대 및 성능 향상을 위해서는 적합한 물성을 갖는 이온교환막 개발이 필요하다. 이러한 이온교환막은 크게 양이온교환막, 음이온교환막, 바이폴라막으로 분류되고 있으며, 이들 막들은 화학적, 물리적, 형태학적 특성에 따라 다양한 용도을 갖고 있다. 본 총설에서는 이온교환막의 주요한 특징과 함께 이들의 제조 방법에 대해 기술했다. 이어서 이온교환막을 이용하여 최근 개발되고 있는 전기화학 시스템에 기반을 둔 역전기 투석, 레독스 흐름 전지, 수전해 공정에 대해서 소개하고, 각 에너지 공정에서 이온교환막이 갖는 역할과 조건에 대해서 설명하였다.
        5,200원
        9.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40%, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6%, response time of 4-5 sec, and a coloration efficiency of 91.0 cm2/C. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.
        4,000원
        10.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and O3 because of their high sensitivity, high response and high stability. Tungsten oxides (WO3) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of WO3. Nanosize WO3 are synthesized using the hydrothermal method. Asprepared WO3 nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze (MxWO3, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that WO3 can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of WO3.
        4,000원
        12.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped Si/SiO2 substrate. Consequently, we observed an enhancement of the performance of the GNRtransistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.
        4,000원
        13.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Mn compacts are fabricated by the pulsed current activated sintering method (PCAS) for sputtering target application. For fabricating the compacts, optimized sintering conditions such as the temperature, pulse ratio, pressure, and heating rate are controlled during the sintering process. The final sintering temperature and heating rate required to fabricate the target materials having high density are 700oC and 80oC/min, respectively. The heating directly progresses up to 700oC with a 3 min holding time. The sputtering target materials having high relative density of 100% are fabricated by employing a uniaxial pressure of 60 MPa and a sintering temperature of 700oC without any significant change in the grain size. Also, the shrinkage displacement of the Cu-Mn target materials considerably increases with an increase in the pressure at sintering temperatures up to 700oC.
        4,000원
        14.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        GNPs have several excellent mechanical properties including high strength, a good young’s modulus, thermal conductivity, corrosion resistance, electronic shielding, etc. In this study, CF/GNP/Epoxy composites were manufactured using GNP weight ratios of 0.15 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt% and 1 wt%. The composites were manufactured with a mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D3039, D256 and D3181, respectively. The results show that the CF/GNP0.3wt%/Epoxy composites have good mechanical properties, e.g., tensile strength and impact and wear resistance. In this study, both carbon fabric and GNPs were used as reinforcements in the composites. The mechanical properties increased and weight loss decreased as the GNP content in the resin films was increased.
        4,000원
        15.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide whichcan enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was thenprepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a NiCl2 environment. Afterremoving surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemicalvapor deposition at 200oC. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing(RTA) process at 730oC for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as thecrystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer wasepitaxially crystallized with the help of NiSi2 precipitates that originated from the poly-Si seed layer. The crystallinity of theSERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process.The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to 1×1018cm−3. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by theSERTA process were 85cm2/V·s and 1.23V/decade at Vds=−3V, respectively. The off current was little increased underreverse bias from 1.0×10−11 A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakagecurrent can be fabricated with more precise experiments.
        4,000원
        16.
        2008.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, tantalum (Ta) compacts were fabricated in a spark plasma sintering (SPS) process and their microstructure and mechanical properties were investigated. Ta compacts with a density of 99% were successfully fabricated by controlling the sintering conditions of the current and the temperature. The density and hardness were increased as the sintering temperature increased. The Ta2C compound was observed at the surface of the compacts due to the contact between the Ta powder and graphite mold during the sintering process. The main fracture mode showed a mixed type with intergranular and transgranular modes having some roughness.
        4,000원
        18.
        1999.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        6,400원
        19.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 선형가속기의 소조사면에 보다 정확한 선량계측이 가능하고, 빔 분포 영상화가 가능 계측시스템 개발을 위해 반도체화합물을 이용한 검출 센서를 제작하여 성능평가를 하였다. 센서 제작은 대면적 필름 형성을 위해 입자침전법을 이용하였다. 고에너지 X선에 대한 검출 특성은 암전류, 출력전류, 상승시간, 하강시간, 응답지연 측정을 통해 조사되었다. 측정 결과, TiO2가 혼합된 HgI2 센서가 PbI2, PbO, HgI2 보다 우수한 특성을 보였다. 선형가속기를 이용하여 선형성, 재현성 및 정확성 평가를 수행하였으며, 결과적으로 실제 임상에 적용되고 있는 선량 검출기와 감응 특성을 비교 시 재현성, 선형성 및 정확성 등에서 매우 우수한 특성을 나타내는 것을 확인할 수 있었다.
        20.
        2012.01 KCI 등재 서비스 종료(열람 제한)
        최근 디지털 방사선 영상획득을 위한 평판형 X선 검출기에 이용되는 광도전체(a-Se, HgI2, PbO, CdTe, PbI2 등)에 대한 관심이 증대되고 있다. 본 연구에서는 입자침전법 적용이 가능한 광도전 물질을 이용하여 X선 영상 검출기 적용을 위한 필름층을 제작하여 평가하였다. 먼저, X선 영상에서 일반적으로 사용되는 에너지대역인 70 kVp 의 연속 X선에 대한 필름 두께별 양자효율을 몬테카를로 시뮬레이션을 통해 조사하였다. 평가결과, 현재 상용화된 500 μm 두께의 a-Se 필름에 대한 양자효율인 64 %와 유사한 HgI2의 필름의 두께는 180 μm 정도였으며, 240 μm 두께에서 74 %의높은 양자효율을 보였다. 입자침전법을 이용하여 제작된 239 μm 필름에 대한 전기적 측정결과, 10 pA/mm2 이하의 매우 낮은 암전류를 보였으며, X선 민감도는 1 V/μm의 인가전압에서 19.8 mC/mR-sec의 높은 감도를 보였다. 영상의대조도에 영향을 미치는 신호 대 잡음비 평가결과 0.8 V/μm의 낮은 동작전압에서 3,125의 높은 값을 보였으며, 전기장의 세기가 높아질수록 암전류의 급격한 증가에 의해 SNR 값이 지수적으로 감소하였다. 이러한 결과는 종래의 a-Se을 이용하는 평판형 검출기를 입자 침전법으로 제작 가능한 필름으로 대체하여 저가형 고성능 영상검출기 개발이 가능할 것으로 기대된다.
        1 2